scispace - formally typeset
Search or ask a question
Author

Ling Sang

Other affiliations: Wuhan Jinyintan Hospital
Bio: Ling Sang is an academic researcher from Guangzhou Medical University. The author has contributed to research in topics: Medicine & Mechanical ventilation. The author has an hindex of 12, co-authored 23 publications receiving 3830 citations. Previous affiliations of Ling Sang include Wuhan Jinyintan Hospital.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that among laboratory confirmed cases of COVID-19, patients with any comorbidity yielded poorer clinical outcomes than those without and a greater number ofComorbidities also correlated with poorer clinical outcome.
Abstract: Background The coronavirus disease 2019 (Covid-19) outbreak is evolving rapidly worldwide. Objective To evaluate the risk of serious adverse outcomes in patients with coronavirus disease 2019 (Covid-19) by stratifying the comorbidity status. Methods We analysed the data from 1590 laboratory-confirmed hospitalised patients 575 hospitals in 31 province/autonomous regions/provincial municipalities across mainland China between December 11th, 2019 and January 31st, 2020. We analyse the composite endpoints, which consisted of admission to intensive care unit, or invasive ventilation, or death. The risk of reaching to the composite endpoints was compared according to the presence and number of comorbidities. Results The mean age was 48.9 years. 686 patients (42.7%) were females. Severe cases accounted for 16.0% of the study population. 131 (8.2%) patients reached to the composite endpoints. 399 (25.1%) reported having at least one comorbidity. The most prevalent comorbidity was hypertension (16.9%), followed by diabetes (8.2%). 130 (8.2%) patients reported having two or more comorbidities. After adjusting for age and smoking status, COPD [hazards ratio (HR) 2.681, 95% confidence interval (95%CI) 1.424–5.048], diabetes (HR 1.59, 95%CI 1.03–2.45), hypertension (HR 1.58, 95%CI 1.07–2.32) and malignancy (HR 3.50, 95%CI 1.60–7.64) were risk factors of reaching to the composite endpoints. The HR was 1.79 (95%CI 1.16–2.77) among patients with at least one comorbidity and 2.59 (95%CI 1.61–4.17) among patients with two or more comorbidities. Conclusion Among laboratory-confirmed cases of Covid-19, patients with any comorbidity yielded poorer clinical outcomes than those without. A greater number of comorbidities also correlated with poorer clinical outcomes.

2,587 citations

Journal ArticleDOI
TL;DR: A risk score based on characteristics of COVID-19 patients at the time of admission to the hospital was developed that may help predict a patient's risk of developing critical illness.
Abstract: Importance Early identification of patients with novel coronavirus disease 2019 (COVID-19) who may develop critical illness is of great importance and may aid in delivering proper treatment and optimizing use of resources. Objective To develop and validate a clinical score at hospital admission for predicting which patients with COVID-19 will develop critical illness based on a nationwide cohort in China. Design, Setting, and Participants Collaborating with the National Health Commission of China, we established a retrospective cohort of patients with COVID-19 from 575 hospitals in 31 provincial administrative regions as of January 31, 2020. Epidemiological, clinical, laboratory, and imaging variables ascertained at hospital admission were screened using Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression to construct a predictive risk score (COVID-GRAM). The score provides an estimate of the risk that a hospitalized patient with COVID-19 will develop critical illness. Accuracy of the score was measured by the area under the receiver operating characteristic curve (AUC). Data from 4 additional cohorts in China hospitalized with COVID-19 were used to validate the score. Data were analyzed between February 20, 2020 and March 17, 2020. Main Outcomes and Measures Among patients with COVID-19 admitted to the hospital, critical illness was defined as the composite measure of admission to the intensive care unit, invasive ventilation, or death. Results The development cohort included 1590 patients. the mean (SD) age of patients in the cohort was 48.9 (15.7) years; 904 (57.3%) were men. The validation cohort included 710 patients with a mean (SD) age of 48.2 (15.2) years, and 382 (53.8%) were men and 172 (24.2%). From 72 potential predictors, 10 variables were independent predictive factors and were included in the risk score: chest radiographic abnormality (OR, 3.39; 95% CI, 2.14-5.38), age (OR, 1.03; 95% CI, 1.01-1.05), hemoptysis (OR, 4.53; 95% CI, 1.36-15.15), dyspnea (OR, 1.88; 95% CI, 1.18-3.01), unconsciousness (OR, 4.71; 95% CI, 1.39-15.98), number of comorbidities (OR, 1.60; 95% CI, 1.27-2.00), cancer history (OR, 4.07; 95% CI, 1.23-13.43), neutrophil-to-lymphocyte ratio (OR, 1.06; 95% CI, 1.02-1.10), lactate dehydrogenase (OR, 1.002; 95% CI, 1.001-1.004) and direct bilirubin (OR, 1.15; 95% CI, 1.06-1.24). The mean AUC in the development cohort was 0.88 (95% CI, 0.85-0.91) and the AUC in the validation cohort was 0.88 (95% CI, 0.84-0.93). The score has been translated into an online risk calculator that is freely available to the public (http://118.126.104.170/) Conclusions and Relevance In this study, a risk score based on characteristics of COVID-19 patients at the time of admission to the hospital was developed that may help predict a patient’s risk of developing critical illness.

1,032 citations

Posted ContentDOI
27 Feb 2020-medRxiv
TL;DR: Comorbidities are present in around one fourth of patients with COVID-19 in China, and predispose to poorer clinical outcomes, and have significantly escalated risks of reaching to the composite endpoint compared with those who had a single comorbidity.
Abstract: Objective To evaluate the spectrum of comorbidities and its impact on the clinical outcome in patients with coronavirus disease 2019 (COVID-19). Design Retrospective case studies Setting 575 hospitals in 31 province/autonomous regions/provincial municipalities across China Participants 1,590 laboratory-confirmed hospitalized patients. Data were collected from November 21st, 2019 to January 31st, 2020. Main outcomes and measures Epidemiological and clinical variables (in particular, comorbidities) were extracted from medical charts. The disease severity was categorized based on the American Thoracic Society guidelines for community-acquired pneumonia. The primary endpoint was the composite endpoints, which consisted of the admission to intensive care unit (ICU), or invasive ventilation, or death. The risk of reaching to the composite endpoints was compared among patients with COVID-19 according to the presence and number of comorbidities. Results Of the 1,590 cases, the mean age was 48.9 years. 686 patients (42.7%) were females. 647 (40.7%) patients were managed inside Hubei province, and 1,334 (83.9%) patients had a contact history of Wuhan city. Severe cases accounted for 16.0% of the study population. 131 (8.2%) patients reached to the composite endpoints. 399 (25.1%) reported having at least one comorbidity. 269 (16.9%), 59 (3.7%), 30 (1.9%), 130 (8.2%), 28 (1.8%), 24 (1.5%), 21 (1.3%), 18 (1.1%) and 3 (0.2%) patients reported having hypertension, cardiovascular diseases, cerebrovascular diseases, diabetes, hepatitis B infections, chronic obstructive pulmonary disease, chronic kidney diseases, malignancy and immunodeficiency, respectively. 130 (8.2%) patients reported having two or more comorbidities. Patients with two or more comorbidities had significantly escalated risks of reaching to the composite endpoint compared with those who had a single comorbidity, and even more so as compared with those without (all P Conclusion Comorbidities are present in around one fourth of patients with COVID-19 in China, and predispose to poorer clinical outcomes. Highlights What is already known on this topic -Since November 2019, the rapid outbreak of coronavirus disease 2019 (COVID-19) has recently become a public health emergency of international concern. There have been 79,331 laboratory-confirmed cases and 2,595 deaths globally as of February 25th, 2020 -Previous studies have demonstrated the association between comorbidities and other severe acute respiratory diseases including SARS and MERS. -No study with a nationwide representative cohort has demonstrated the spectrum of comorbidities and the impact of comorbidities on the clinical outcomes in patients with COVID-19. What this study adds -In this nationwide study with 1,590 patients with COVID-19, comorbidities were identified in 399 patients. Comorbidities of COVID-19 mainly included hypertension, cardiovascular diseases, cerebrovascular diseases, diabetes, hepatitis B infections, chronic obstructive pulmonary disease, chronic kidney diseases, malignancy and immunodeficiency. -The presence of as well as the number of comorbidities predicted the poor clinical outcomes (admission to intensive care unit, invasive ventilation, or death) of COVID-19. -Comorbidities should be taken into account when estimating the clinical outcomes of patients with COVID-19 on hospital admission.

682 citations

Journal ArticleDOI
TL;DR: There were more severe cases and poorer outcomes for COVID-19 patients treated in Hubei, which might be attributed to the prolonged duration of symptom onset to hospitalisation in the epicentre, and the reason for delaying hospitalisation is warranted.
Abstract: Background During the outbreak of coronavirus disease 2019 (COVID-19), consistent and considerable differences in disease severity and mortality rate of patients treated in Hubei province compared to those in other parts of China have been observed. We sought to compare the clinical characteristics and outcomes of patients being treated inside and outside Hubei province, and explore the factors underlying these differences. Methods Collaborating with the National Health Commission, we established a retrospective cohort to study hospitalised COVID-19 cases in China. Clinical characteristics, the rate of severe events and deaths, and the time to critical illness (invasive ventilation or intensive care unit admission or death) were compared between patients within and outside Hubei. The impact of Wuhan-related exposure (a presumed key factor that drove the severe situation in Hubei, as Wuhan is the epicentre as well the administrative centre of Hubei province) and the duration between symptom onset and admission on prognosis were also determined. Results At the data cut-off (31 January 2020), 1590 cases from 575 hospitals in 31 provincial administrative regions were collected (core cohort). The overall rate of severe cases and mortality was 16.0% and 3.2%, respectively. Patients in Hubei (predominantly with Wuhan-related exposure, 597 (92.3%) out of 647) were older (mean age 49.7 versus 44.9 years), had more cases with comorbidity (32.9% versus 19.7%), higher symptomatic burden, abnormal radiologic manifestations and, especially, a longer waiting time between symptom onset and admission (5.7 versus 4.5 days) compared with patients outside Hubei. Patients in Hubei (severe event rate 23.0% versus 11.1%, death rate 7.3% versus 0.3%, HR (95% CI) for critical illness 1.59 (1.05–2.41)) have a poorer prognosis compared with patients outside Hubei after adjusting for age and comorbidity. However, among patients outside Hubei, the duration from symptom onset to hospitalisation (mean 4.4 versus 4.7 days) and prognosis (HR (95%) 0.84 (0.40–1.80)) were similar between patients with or without Wuhan-related exposure. In the overall population, the waiting time, but neither treated in Hubei nor Wuhan-related exposure, remained an independent prognostic factor (HR (95%) 1.05 (1.01–1.08)). Conclusion There were more severe cases and poorer outcomes for COVID-19 patients treated in Hubei, which might be attributed to the prolonged duration of symptom onset to hospitalisation in the epicentre. Future studies to determine the reason for delaying hospitalisation are warranted.

248 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: Author(s): Livingston, Gill; Huntley, Jonathan; Sommerlad, Andrew ; Sommer Glad, Andrew; Ames, David; Ballard, Clive; Banerjee, Sube; Brayne, Carol; Burns, Alistair; Cohen-Mansfield, Jiska; Cooper, Claudia; Costafreda, Sergi G; Dias, Amit; Fox, Nick; Gitlin, Laura N; Howard, Robert; Kales, Helen C;

3,559 citations

Journal ArticleDOI
07 Apr 2020-BMJ
TL;DR: Proposed models for covid-19 are poorly reported, at high risk of bias, and their reported performance is probably optimistic, according to a review of published and preprint reports.
Abstract: Objective To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. Design Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. Data sources PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. Study selection Studies that developed or validated a multivariable covid-19 related prediction model. Data extraction At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). Results 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. Conclusion Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. Systematic review registration Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. Readers’ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity.

2,183 citations

Journal ArticleDOI
TL;DR: The extrapulmonary organ-specific pathophysiology, presentations and management considerations for patients with COVID-19 are reviewed to aid clinicians and scientists in recognizing and monitoring the spectrum of manifestations, and in developing research priorities and therapeutic strategies for all organ systems involved.
Abstract: Although COVID-19 is most well known for causing substantial respiratory pathology, it can also result in several extrapulmonary manifestations. These conditions include thrombotic complications, myocardial dysfunction and arrhythmia, acute coronary syndromes, acute kidney injury, gastrointestinal symptoms, hepatocellular injury, hyperglycemia and ketosis, neurologic illnesses, ocular symptoms, and dermatologic complications. Given that ACE2, the entry receptor for the causative coronavirus SARS-CoV-2, is expressed in multiple extrapulmonary tissues, direct viral tissue damage is a plausible mechanism of injury. In addition, endothelial damage and thromboinflammation, dysregulation of immune responses, and maladaptation of ACE2-related pathways might all contribute to these extrapulmonary manifestations of COVID-19. Here we review the extrapulmonary organ-specific pathophysiology, presentations and management considerations for patients with COVID-19 to aid clinicians and scientists in recognizing and monitoring the spectrum of manifestations, and in developing research priorities and therapeutic strategies for all organ systems involved.

2,113 citations

Journal ArticleDOI
TL;DR: The findings show the prevalence of kidney disease on admission and the development of AKI during hospitalization in patients with COVID-19 is high and is associated with in-hospital mortality, and clinicians should increase their awareness of kidney patients with severe CO VID-19.

1,994 citations