scispace - formally typeset
Search or ask a question
Author

Linghong Lu

Bio: Linghong Lu is an academic researcher from Nanjing Tech University. The author has contributed to research in topics: Adsorption & Carbon nanotube. The author has an hindex of 26, co-authored 68 publications receiving 1846 citations. Previous affiliations of Linghong Lu include South China University of Technology & Zhejiang University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a bicrystalline titanium dioxide nanofiber with enhanced photocatalytic activity was synthesized from potassium titanate K2Ti2O5 via ion exchange and calcination.
Abstract: A bicrystalline titanium dioxide nanofiber with enhanced photocatalytic activity was synthesized from potassium titanate K2Ti2O5 via ion exchange and calcination. The nanofiber has a core−shell crystalline structure with a thin TiO2(B) phase sheathing the anatase core, as characterized by X-ray diffraction, Raman spectroscopy, and high-resolution transmission microscopy (HRTEM). From HRTEM and local electron diffraction patterns, the two crystalline phases form a coherent interface with the 0.34-nm spacing between the (102) planes of TiO2(B) matching that between the anatase (101) lattice planes. The core−shell anatase/TiO2(B) nanofiber shows enhanced photocatalytic activity in iodine oxidation reaction with a 20−50% increase in extent of reaction compared to either single-crystal anatase or single-crystal TiO2(B) nanofibers. Anatase and TiO2(B) have the same band gap value of 3.2 eV, while theoretical calculations show the conduction band (CB) and valence band (VB) energies in anatase are both lower than...

188 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of temperature, pressure, and pore size on the adsorption behavior of carbon nanotubes (CNTs) was investigated. And the results showed that the CNTs have a preferential adsorbed CO2 in the binary CO2/CH4 mixture.
Abstract: Grand canonical Monte Carlo (GCMC) simulations were performed to investigate the adsorption behavior of an equimolar CO2/CH4 mixture in carbon nanotubes (CNTs). Five CNTs [(6, 6), (7, 7), (8, 8), (9, 9), and (10, 10)] with diameters varying from 0.678 to 1.356 nm, seven temperatures (283, 293, 303, 313, 323, 333, 343 K), and seven pressures (1, 5, 10, 15, 20, 25, 30 MPa) were chosen to investigate the effect of temperature, pressure, and pore size on the adsorption behavior. The results show that the CNTs have a preferential adsorption of CO2 in the binary CO2/CH4 mixture. For pore size effect on the adsorption behavior, we found that the adsorption of CO2 is much larger than that of CH4 in the same CNT and that the CO2 adsorption in the CNTs increases dramatically with an increase of CNT's diameter, whereas the absolute amount of adsorbed CH4 changes little with the CNT's pore size. In the investigated temperature and pressure ranges, we observed that in the CNTs with diameters less than 1.1 nm, the temp...

122 citations

Journal ArticleDOI
TL;DR: Simulation results indicate that the preferential orientation of water molecules in coordination shells of these two cations presents an anomalous change in the CNTs and causes a diameter-dependent variation for the interaction energy between the cation and water molecule in its coordination shell.
Abstract: We performed molecular dynamics simulations of the hydration of Na+ and K+ in infinitely long single-walled armchair carbon nanotubes (CNTs) at 298 K. Simulation results indicate that the preferential orientation of water molecules in coordination shells of these two cations presents an anomalous change in the CNTs and causes a diameter-dependent variation for the interaction energy between the cation and water molecules in its coordination shell. In the five CNTs of this work, it is energetically favorable for confining a hydrated K+ inside the two narrow CNTs with diameters of 0.60 and 0.73 nm, whereas the situation is reverse inside the wide CNTs with diameters of 0.87, 1.0, and 1.28 nm. This finding is important for CNT applications in ionic systems that control the selectivity and the ionic flow.

117 citations

Journal ArticleDOI
TL;DR: The mobility of the ions and the stability of the coordination shells are greatly affected by the temperature in the nanotube as in the bulk solutions, and these results help to understand the biological and chemical processes at the high temperature.
Abstract: Molecular dynamics simulations have been performed to investigate the hydration of Li+, Na+, K+, F−, and Cl− inside the carbon nanotubes at temperatures ranging from 298 to 683 K. The structural characteristics of the coordination shells of ions are studied, including the ion-oxygen radial distribution functions, the coordination numbers, and the orientation distributions of the water molecules. Simulation results show that the first coordination shells of the five ions still exist in the nanoscale confinement. Nevertheless, the first coordination shell structures of cations change more significantly than those of anions because of the preferential orientation of the water molecules induced by the carbon nanotube. The first coordination shells of cations are considerably less ordered in the nanotube than in the bulk solution, whereas the change of the first coordination shell structures of the anions is minor. Furthermore, the confinement induces the anomalous behavior of the coordination shells of the ions with temperature. The first coordination shell of K+ are found to be more ordered as the temperature increases only in the carbon nanotube with the effective diameter of 1.0 nm, implying the enhancement of the ionic hydration with temperature. This is contrary to that in the bulk solution. The coordination shells of the other four ions do not have such behavior in the carbon nanotube with the effective diameter ranging from 0.73 to 1.00 nm. The easier distortion of the coordination shell of K+ and the match of the shell size and the nanotube size may play roles in this phenomenon. The exchange of water molecules in the first coordination shells of the ions with the solution and the ion diffusion along the axial direction of the nanotube are also investigated. The mobility of the ions and the stability of the coordination shells are greatly affected by the temperature in the nanotube as in the bulk solutions. These results help to understand the biological and chemical processes at the high temperature.

81 citations

Journal ArticleDOI
TL;DR: In this paper, the Au∕n-ZnO contact from Ohmic to rectifying with H2O2 pretreatment was studied systematically using I-V measurements, x-ray photoemission spectroscopy, positron annihilation spectrography, and deep level transient spectrograms, and the formation of a rectifying contact can be attributed to the reduced conductivity of the surface region due to the removal of OH and formation of vacancy-type defects.
Abstract: Conversion of the Au∕n-ZnO contact from Ohmic to rectifying with H2O2 pretreatment was studied systematically using I-V measurements, x-ray photoemission spectroscopy, positron annihilation spectroscopy, and deep level transient spectroscopy. H2O2 treatment did not affect the carbon surface contamination or the EC–0.31eV deep level, but it resulted in a significant decrease of the surface OH contamination and the formation of vacancy-type defects (Zn vacancy or vacancy cluster) close to the surface. The formation of a rectifying contact can be attributed to the reduced conductivity of the surface region due to the removal of OH and the formation of vacancy-type defects.

74 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Generations Yi Ma,† Xiuli Wang,† Yushuai Jia,† Xiaobo Chen,‡ Hongxian Han,*,† and Can Li*,†
Abstract: Generations Yi Ma,† Xiuli Wang,† Yushuai Jia,† Xiaobo Chen,‡ Hongxian Han,*,† and Can Li*,† †State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China ‡Department of Chemistry, College of Arts and Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, United States

1,990 citations

Journal ArticleDOI
TL;DR: This review encompasses several advancements made in these aspects of titania, and also some of the new physical insights related to the charge transfer events like charge carrier generation, trapping, detrapping, and their transfer to surface are discussed for each strategy of the modified titania to support the conclusions derived.
Abstract: Titania is one of the most widely used benchmark standard photocatalysts in the field of environmental applications. However, the large band gap of titania and massive recombination of photogenerated charge carriers limit its overall photocatalytic efficiency. The former can be overcome by modifying the electronic band structure of titania including various strategies like coupling with a narrow band gap semiconductor, metal ion/nonmetal ion doping, codoping with two or more foreign ions, surface sensitization by organic dyes or metal complexes, and noble metal deposition. The latter can be corrected by changing the surface properties of titania by fluorination or sulfation or by the addition of suitable electron acceptors besides molecular oxygen in the reaction medium. This review encompasses several advancements made in these aspects, and also some of the new physical insights related to the charge transfer events like charge carrier generation, trapping, detrapping, and their transfer to surface are d...

1,728 citations

Journal ArticleDOI
TL;DR: In this article, a variety of promising sorbents such as activated carbonaceous materials, microporous/mesoporous silica or zeolites, carbonates, and polymeric resins loaded with or without nitrogen functionality for the removal of CO2 from the flue gas streams have been reviewed.
Abstract: Post-combustion CO2 capture from the flue gas is one of the key technology options to reduce greenhouse gases, because this can be potentially retrofitted to the existing fleet of coal-fired power stations. Adsorption processes using solid sorbents capable of capturing CO2 from flue gas streams have shown many potential advantages, compared to other conventional CO2 capture using aqueous amine solvents. In view of this, in the past few years, several research groups have been involved in the development of new solid sorbents for CO2 capture from flue gas with superior performance and desired economics. A variety of promising sorbents such as activated carbonaceous materials, microporous/mesoporous silica or zeolites, carbonates, and polymeric resins loaded with or without nitrogen functionality for the removal of CO2 from the flue gas streams have been reviewed. Different methods of impregnating functional groups, including grafting techniques and modifying the support materials, have been discussed to en...

1,502 citations

Journal ArticleDOI
TL;DR: In this paper, the authors address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon and find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of flexible membranes.
Abstract: The stability of two-dimensional (2D) layers and membranes is subject of a long standing theoretical debate. According to the so called Mermin-Wagner theorem, long wavelength fluctuations destroy the long-range order for 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These dangerous fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes making that a two-dimensional membrane can exist but should present strong height fluctuations. The discovery of graphene, the first truly 2D crystal and the recent experimental observation of ripples in freely hanging graphene makes these issues especially important. Beside the academic interest, understanding the mechanisms of stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest for its unusual Dirac spectrum and electronic properties. Here we address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of stability of flexible membranes. This unexpected result seems to be due to the multiplicity of chemical bonding in carbon.

1,367 citations