scispace - formally typeset
Search or ask a question
Author

Linjie Zhi

Bio: Linjie Zhi is an academic researcher from Center for Excellence in Education. The author has contributed to research in topics: Graphene & Catalysis. The author has an hindex of 75, co-authored 215 publications receiving 27168 citations. Previous affiliations of Linjie Zhi include University of Shanghai for Science and Technology & Max Planck Society.
Topics: Graphene, Catalysis, Carbon, Lithium, Anode


Papers
More filters
Journal ArticleDOI
TL;DR: Transparent, conductive, and ultrathin graphene films, as an alternative to the ubiquitously employed metal oxides window electrodes for solid-state dye-sensitized solar cells, are demonstrated and show high chemical and thermal stabilities and an ultrasmooth surface with tunable wettability.
Abstract: Transparent, conductive, and ultrathin graphene films, as an alternative to the ubiquitously employed metal oxides window electrodes for solid-state dye-sensitized solar cells, are demonstrated. These graphene films are fabricated from exfoliated graphite oxide, followed by thermal reduction. The obtained films exhibit a high conductivity of 550 S/cm and a transparency of more than 70% over 1000−3000 nm. Furthermore, they show high chemical and thermal stabilities as well as an ultrasmooth surface with tunable wettability.

4,314 citations

Journal ArticleDOI
TL;DR: In this paper, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively.
Abstract: Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost-effective microwave-assisted method. In order to achieve high energy and power densities, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high-voltage region of 0–1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g−1 and high energy density of 77.8 Wh kg−1. Furthermore, the Ni(OH)2/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems.

1,808 citations

Journal ArticleDOI
TL;DR: An asymmetric supercapacitor with high energy density has been developed successfully using graphene/MnO2 composite as positive electrode and activated carbon nanofibers (ACN) as negative electrode in a neutral aqueous Na2SO4 electrolyte as mentioned in this paper.
Abstract: Asymmetric supercapacitor with high energy density has been developed successfully using graphene/MnO2 composite as positive electrode and activated carbon nanofibers (ACN) as negative electrode in a neutral aqueous Na2SO4 electrolyte. Due to the high capacitances and excellent rate performances of graphene/MnO2 and ACN, as well as the synergistic effects of the two electrodes, such asymmetric cell exhibits superior electrochemical performances. An optimized asymmetric supercapacitor can be cycled reversibly in the voltage range of 0–1.8 V, and exhibits maximum energy density of 51.1 Wh kg−1, which is much higher than that of MnO2//DWNT cell (29.1 Wh kg−1). Additionally, graphene/MnO2//ACN asymmetric supercapacitor exhibits excellent cycling durability, with 97% specific capacitance retained even after 1000 cycles. These encouraging results show great potential in developing energy storage devices with high energy and power densities for practical applications.

1,768 citations

Journal ArticleDOI
TL;DR: Graphene has attracted great attention in various application areas, such as energy-storage materials, polymer composites, liquid crystal devices, and mechanical resonators.
Abstract: Owing to its unique electrical, thermal, and mechanical properties, graphene has attracted great attention in various application areas, such as energy-storage materials, [ 1–3 ] free-standing paper-like materials, [ 4–6 ] polymer composites, [ 7–9 ] liquid crystal devices, [ 10 ] and mechanical resonators. [ 11 , 12 ] Approaches for preparing graphene include micromechanical cleavage, [ 11 , 13 , 14 ]

1,203 citations

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize heteroatom (N or S)-doped graphene with high surface area via thermal reaction between graphene oxide and guest gases (NH3 or H2S) on the basis of ultrathin graphene oxide-porous silica sheets at high temperatures.
Abstract: Heteroatom (N or S)-doped graphene with high surface area is successfully synthesized via thermal reaction between graphene oxide and guest gases (NH3 or H2S) on the basis of ultrathin graphene oxide-porous silica sheets at high temperatures. It is found that both N and S-doping can occur at annealing temperatures from 500 to 1000 °C to form the different binding configurations at the edges or on the planes of the graphene, such as pyridinic-N, pyrrolic-N, and graphitic-N for N-doped graphene, thiophene-like S, and oxidized S for S-doped graphene. Moreover, the resulting N and S-doped graphene sheets exhibit good electrocatalytic activity, long durability, and high selectivity when they are employed as metal-free catalysts for oxygen reduction reactions. This approach may provide an efficient platform for the synthesis of a series of heteroatom-doped graphenes for different applications.

1,161 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
19 Jun 2009-Science
TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Abstract: Graphene is a wonder material with many superlatives to its name. It is the thinnest known material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have zero effective mass, and can travel for micrometers without scattering at room temperature. Graphene can sustain current densities six orders of magnitude higher than that of copper, shows record thermal conductivity and stiffness, is impermeable to gases, and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a benchtop experiment. This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.

12,117 citations

Journal ArticleDOI
05 Jun 2009-Science
TL;DR: It is shown that graphene grows in a self-limiting way on copper films as large-area sheets (one square centimeter) from methane through a chemical vapor deposition process, and graphene film transfer processes to arbitrary substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.
Abstract: Graphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemical vapor deposition using methane. The films are predominantly single-layer graphene, with a small percentage (less than 5%) of the area having few layers, and are continuous across copper surface steps and grain boundaries. The low solubility of carbon in copper appears to help make this growth process self-limiting. We also developed graphene film transfer processes to arbitrary substrates, and dual-gated field-effect transistors fabricated on silicon/silicon dioxide substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.

10,663 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations