scispace - formally typeset
Search or ask a question
Author

Lionel Arnaud

Bio: Lionel Arnaud is an academic researcher from University of Paris. The author has contributed to research in topics: Machining & DAB1. The author has an hindex of 29, co-authored 71 publications receiving 3722 citations. Previous affiliations of Lionel Arnaud include École Normale Supérieure & University of Geneva.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that Plk1 is an important target of the DNA damage checkpoint, enabling cell-cycle arrests at multiple points in G2 and mitosis, and blocking mitotic exit.
Abstract: Polo-like kinases (PLKs) have an important role in several stages of mitosis. They contribute to the activation of cyclin B/Cdc2 and are involved in centrosome maturation and bipolar spindle formation at the onset of mitosis. PLKs also control mitotic exit by regulating the anaphase-promoting complex (APC) and have been implicated in the temporal and spatial coordination of cytokinesis. Experiments in budding yeast have shown that the PLK Cdc5 may be controlled by the DNA damage checkpoint. Here we report the effects of DNA damage on Polo-like kinase-1 (Plk1) in a variety of human cell lines. We show that Plk1 is inhibited by DNA damage in G2 and in mitosis. In line with this, we show that DNA damage blocks mitotic exit. DNA damage does not inhibit the kinase activity of Plk1 mutants in which the conserved threonine residue in the T-loop has been changed to aspartic acid, suggesting that DNA damage interferes with the activation of Plk1. Significantly, expression of these mutants can override the G2 arrest induced by DNA damage. On the basis of these data we propose that Plk1 is an important target of the DNA damage checkpoint, enabling cell-cycle arrests at multiple points in G2 and mitosis.

464 citations

Journal ArticleDOI
TL;DR: In this article, the human homolog of yeast Mps1p, hMps1, is shown to be a cell cycle-regulated kinase with maximal activity during the M phase.
Abstract: Budding yeast Mps1p kinase has been implicated in both the duplication of microtubule-organizing centers and the spindle assembly checkpoint. Here we show that hMps1, the human homolog of yeast Mps1p, is a cell cycle-regulated kinase with maximal activity during M phase. hMps1 localizes to kinetochores and its activity and phosphorylation state increase upon activation of the mitotic checkpoint. By antibody microinjection and siRNA, we demonstrate that hMps1 is required for human cells to undergo checkpoint arrest in response to microtubule depolymerization. In contrast, centrosome (re-)duplication as well as cell division occur in the absence of hMps1. We conclude that hMps1 is required for the spindle assembly checkpoint but not for centrosome duplication.

281 citations

Journal ArticleDOI
TL;DR: It is found that fyn is required for proper Dab1 levels and phosphorylation in vivo and in vitro, suggesting additional complexity in the Reelin signaling pathway.

276 citations

Journal ArticleDOI
TL;DR: It is reported that, although Src is dispensable and although the absence of Fyn causes an intermediate phenotype, the combined absence of Src and Fyn almost abolishes tyrosine phosphorylation of Dab1 and causes defects in the fetal cortex and cerebellum very similar to those of dab1 mutants of the same age.
Abstract: Nonreceptor protein tyrosine kinases of the Src family regulate the survival, proliferation, differentiation, and motility of many cell types, but their roles in brain development are unclear. Biochemical and in vitro experiments implicate Src and Fyn in the Reelin-dependent tyrosine phosphorylation of Dab1, which controls the positioning of radially migrating neurons in many brain regions. However, genetic evidence that either Src or Fyn mediates Reelin-dependent migrations in vivo has been lacking. Here, we report that, although Src is dispensable and although the absence of Fyn causes an intermediate phenotype, the combined absence of Src and Fyn almost abolishes tyrosine phosphorylation of Dab1 and causes defects in the fetal cortex and cerebellum very similar to those of dab1 mutants of the same age. Neurogenesis is not detectably affected, but the layering of neurons in the cortex is inverted, and the formation of the Purkinje plate is impaired. This implies that Src and Fyn are needed for Reelin-dependent events during brain development.

196 citations

Journal ArticleDOI
TL;DR: Regulation of Crk/CrkL, C3G, and Rap1 by Reelin may be involved in coordinating neuron migrations during brain development.

195 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work has shown that the use of siRNAs to silence genes in vertebrate cells was only reported a year ago, and the emerging literature indicates that most vertebrate genes can be studied with this technology.
Abstract: Among the 3 billion base pairs of the human genome, there are approximately 30,000-40,000 protein-coding genes, but the function of at least half of them remains unknown. A new tool - short interfering RNAs (siRNAs) - has now been developed for systematically deciphering the functions and interactions of these thousands of genes. siRNAs are an intermediate of RNA interference, the process by which double-stranded RNA silences homologous genes. Although the use of siRNAs to silence genes in vertebrate cells was only reported a year ago, the emerging literature indicates that most vertebrate genes can be studied with this technology.

1,620 citations

Journal ArticleDOI
Erich A. Nigg1
TL;DR: An overview of the many mitotic kinases that regulate cell division and the fidelity of chromosome transmission is given.
Abstract: Mitosis and cytokinesis are undoubtedly the most spectacular parts of the cell cycle. Errors in the choreography of these processes can lead to aneuploidy or genetic instability, fostering cell death or disease. Here, I give an overview of the many mitotic kinases that regulate cell division and the fidelity of chromosome transmission.

1,540 citations

Journal ArticleDOI
TL;DR: High-resolution mass spectrometry–based proteomics was applied to investigate the proteome and phosphoproteome of the human cell cycle on a global scale and quantified 6027 proteins and 20,443 unique phosphorylation sites and their dynamics, finding that nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylated site occupancy in mitosis, suggesting that these proteins may be inactivated by phosphorylate in mitotic cells.
Abstract: Eukaryotic cells replicate by a complex series of evolutionarily conserved events that are tightly regulated at defined stages of the cell division cycle. Progression through this cycle involves a large number of dedicated protein complexes and signaling pathways, and deregulation of this process is implicated in tumorigenesis. We applied high-resolution mass spectrometry-based proteomics to investigate the proteome and phosphoproteome of the human cell cycle on a global scale and quantified 6027 proteins and 20,443 unique phosphorylation sites and their dynamics. Co-regulated proteins and phosphorylation sites were grouped according to their cell cycle kinetics and compared to publicly available messenger RNA microarray data. Most detected phosphorylation sites and more than 20% of all quantified proteins showed substantial regulation, mainly in mitotic cells. Kinase-motif analysis revealed global activation during S phase of the DNA damage response network, which was mediated by phosphorylation by ATM or ATR or DNA-dependent protein kinases. We determined site-specific stoichiometry of more than 5000 sites and found that most of the up-regulated sites phosphorylated by cyclin-dependent kinase 1 (CDK1) or CDK2 were almost fully phosphorylated in mitotic cells. In particular, nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylation site occupancy in mitosis. This suggests that these proteins may be inactivated by phosphorylation in mitotic cells.

1,447 citations

Journal ArticleDOI
18 Nov 2005-Cell
TL;DR: The eIF3 preinitiation complex acts as a scaffold to coordinate a dynamic sequence of events in response to stimuli that promote efficient protein synthesis.

1,102 citations

Journal ArticleDOI
TL;DR: Polo-like kinases are increasingly recognized as key regulators of mitosis, meiosis and cytokinesis and their targeting to different cellular structures through interactions with phosphorylated docking proteins is uncovered.
Abstract: Polo-like kinases (Plks) are increasingly recognized as key regulators of mitosis, meiosis and cytokinesis. In agreement with a broad range of proposed functions during cell division, Plks are subject to complex temporal and spatial control. Recent findings are uncovering the mechanisms of Plk regulation, notably their targeting to different cellular structures through interactions with phosphorylated docking proteins. Moreover, information is emerging on the substrate specificity of Plks and the role of individual substrates in M-phase progression.

1,060 citations