scispace - formally typeset
Search or ask a question
Author

Lionidas J Guibas

Bio: Lionidas J Guibas is an academic researcher. The author has contributed to research in topics: Planar graph & Point location. The author has an hindex of 1, co-authored 1 publications receiving 539 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A substantial refinement of the technique of Lee and Preparata for locating a point in $\mathcal{S}$ based on separating chains is exhibited, which can be implemented in a simple and practical way, and is extensible to subdivisions with edges more general than straight-line segments.
Abstract: Point location, often known in graphics as “hit detection,” is one of the fundamental problems of computational geometry. In a point location query we want to identify which of a given collection of geometric objects contains a particular point. Let $\mathcal{S}$ denote a subdivision of the Euclidean plane into monotone regions by a straight-line graph of m edges. In this paper we exhibit a substantial refinement of the technique of Lee and Preparata [SIAM J. Comput., 6 (1977), pp. 594–606] for locating a point in $\mathcal{S}$ based on separating chains. The new data structure, called a layered dag, can be built in $O(m)$ time, uses $O(m)$ storage, and makes possible point location in $O(\log m)$ time. Unlike previous structures that attain these optimal bounds, the layered dag can be implemented in a simple and practical way, and is extensible to subdivisions with edges more general than straight-line segments.

563 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Voronoi diagram as discussed by the authors divides the plane according to the nearest-neighbor points in the plane, and then divides the vertices of the plane into vertices, where vertices correspond to vertices in a plane.
Abstract: Computational geometry is concerned with the design and analysis of algorithms for geometrical problems. In addition, other more practically oriented, areas of computer science— such as computer graphics, computer-aided design, robotics, pattern recognition, and operations research—give rise to problems that inherently are geometrical. This is one reason computational geometry has attracted enormous research interest in the past decade and is a well-established area today. (For standard sources, we refer to the survey article by Lee and Preparata [19841 and to the textbooks by Preparata and Shames [1985] and Edelsbrunner [1987bl.) Readers familiar with the literature of computational geometry will have noticed, especially in the last few years, an increasing interest in a geometrical construct called the Voronoi diagram. This trend can also be observed in combinatorial geometry and in a considerable number of articles in natural science journals that address the Voronoi diagram under different names specific to the respective area. Given some number of points in the plane, their Voronoi diagram divides the plane according to the nearest-neighbor

4,236 citations

Book
01 Jan 1987
TL;DR: This book offers a modern approach to computational geo- metry, an area thatstudies the computational complexity of geometric problems with an important role in this study.
Abstract: This book offers a modern approach to computational geo- metry, an area thatstudies the computational complexity of geometric problems. Combinatorial investigations play an important role in this study.

2,284 citations

Journal ArticleDOI
TL;DR: L'accentuation est mise sur la representation de donnees dans les applications de traitement d'images, d'infographie, les systemes d'informations geographiques and the robotique.
Abstract: Apercu sur les quadarbres et les structures de donnees hierarchiques. Elles sont basees sur le principe de decomposition recursive. L'accentuation est mise sur la representation de donnees dans les applications de traitement d'images, d'infographie, les systemes d'informations geographiques et la robotique. On examine en detail un certain nombre d'operations dans lesquelles de telles structures de donnees trouvent leur utilisation

2,273 citations

Journal ArticleDOI
Steven Fortune1
TL;DR: A geometric transformation is introduced that allows Voronoi diagrams to be computed using a sweepline technique and is used to obtain simple algorithms for computing the Vor onoi diagram of point sites, of line segment sites, and of weighted point sites.
Abstract: We introduce a geometric transformation that allows Voronoi diagrams to be computed using a sweepline technique. The transformation is used to obtain simple algorithms for computing the Voronoi diagram of point sites, of line segment sites, and of weighted point sites. All algorithms haveO(n logn) worst-case running time and useO(n) space.

1,209 citations

Proceedings ArticleDOI
01 Oct 1998
TL;DR: New packet classification schemes are presented that, with a worst-case and traffic-independent performance metric, can classify packets, by checking amongst a few thousand filtering rules, at rates of a million packets per second using range matches on more than 4 packet header fields.
Abstract: The ability to provide differentiated services to users with widely varying requirements is becoming increasingly important, and Internet Service Providers would like to provide these differentiated services using the same shared network infrastructure. The key mechanism, that enables differentiation in a connectionless network, is the packet classification function that parses the headers of the packets, and after determining their context, classifies them based on administrative policies or real-time reservation decisions. Packet classification, however, is a complex operation that can become the bottleneck in routers that try to support gigabit link capacities. Hence, many proposals for differentiated services only require classification at lower speed edge routers and also avoid classification based on multiple fields in the packet header even if it might be advantageous to service providers. In this paper, we present new packet classification schemes that, with a worst-case and traffic-independent performance metric, can classify packets, by checking amongst a few thousand filtering rules, at rates of a million packets per second using range matches on more than 4 packet header fields. For a special case of classification in two dimensions, we present an algorithm that can handle more than 128K rules at these speeds in a traffic independent manner. We emphasize worst-case performance over average case performance because providing differentiated services requires intelligent queueing and scheduling of packets that precludes any significant queueing before the differentiating step (i.e., before packet classification). The presented filtering or classification schemes can be used to classify packets for security policy enforcement, applying resource management decisions, flow identification for RSVP reservations, multicast look-ups, and for source-destination and policy based routing. The scalability and performance of the algorithms have been demonstrated by implementation and testing in a prototype system.

741 citations