scispace - formally typeset
Search or ask a question
Author

Liora S. Katz

Bio: Liora S. Katz is an academic researcher from Icahn School of Medicine at Mount Sinai. The author has contributed to research in topics: Carbohydrate-responsive element-binding protein & Gene knockdown. The author has an hindex of 11, co-authored 23 publications receiving 444 citations. Previous affiliations of Liora S. Katz include University of Geneva & National Institutes of Health.

Papers
More filters
Journal ArticleDOI
TL;DR: The results strongly suggest that Pax6 is crucial forβ-cells through transcriptional control of key genes coding for proteins that are involved in insulin biosynthesis and secretion as well as glucose and incretin actions on β-cells.
Abstract: The Pax6 transcription factor is crucial for endocrine cell differentiation and function. Indeed, mutations of Pax6 are associated with a diabetic phenotype and a drastic decrease of insulin-positive cell number. Our aim was to better define the β-cell Pax6 transcriptional network and thus provide further information concerning the role of Pax6 in β-cell function. We developed a Pax6-deficient model in rat primary β-cells with specific small interfering RNA leading to a 75% knockdown of Pax6 expression. Through candidate gene approach, we confirmed that Pax6 controls the mRNA levels of the insulin 1 and 2, Pdx1, MafA, GLUT2, and PC1/3 genes in β-cells. Importantly, we identified new Pax6 target genes coding for GK, Nkx6.1, cMaf, PC2, GLP-1R and GIPR which are all involved in β-cell function. Furthermore, we demonstrated that Pax6 directly binds and activates specific elements on the promoter region of these genes. We also demonstrated that Pax6 knockdown led to decreases in insulin cell content, in insulin processing, and a specific defect of glucose-induced insulin secretion as well as a significant reduction of GLP-1 action in primary β-cells. Our results strongly suggest that Pax6 is crucial for β-cells through transcriptional control of key genes coding for proteins that are involved in insulin biosynthesis and secretion as well as glucose and incretin actions on β-cells. We provide further evidence that Pax6 represents a key element of mature β-cell function.

104 citations

Journal ArticleDOI
TL;DR: It is concluded that Pax6 is critical for α cell function and differentiation through the transcriptional control of key genes involved in glucagon gene transcription, proglucagon processing, and α cell differentiation.

71 citations

Journal ArticleDOI
TL;DR: The data support a model in which adrenergic and purinergic pathways exert complementary/synergistic functions in BAT, thus suggesting an alternative to βARs agonists for the activation of human BAT.
Abstract: Background Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity.

70 citations

Journal ArticleDOI
TL;DR: Modulating Nrf2 activity in β cells is a promising therapeutic approach for the treatment of diabetes.
Abstract: Prolonged hyperglycemia is toxic to pancreatic β cells, generating excessive reactive oxygen species, defective glucose-stimulated insulin secretion, decreased insulin production, and eventually β cell death and diabetes. Nrf2 is a master regulator of cellular responses to counteract dangerous levels of oxidative stress. Maintenance of β cell mass depends on Nrf2 to promote the survival, function, and proliferation of β cells. Indeed, Nrf2 activation decreases inflammation, increases insulin sensitivity, reduces body weight, and preserves β cell mass. Therefore, numerous pharmacological activators of Nrf2 are being tested in clinical trials for the treatment of diabetes and diabetic complications. Modulating Nrf2 activity in β cells is a promising therapeutic approach for the treatment of diabetes.

47 citations

Journal ArticleDOI
01 Dec 2015-Diabetes
TL;DR: It is found that ChREBPβ is highly expressed in response to glucose, particularly with prolonged culture in hyperglycemic conditions, and contributes to glucose-stimulated gene expression and proliferation in β-cells, with recruitment of ChRE BPα to tissue-specific elements of the Ch REBPβ isoform promoter.
Abstract: Carbohydrate-responsive element–binding protein (ChREBP) is a glucose-sensing transcription factor required for glucose-stimulated proliferation of pancreatic β-cells in rodents and humans. The full-length isoform (ChREBPα) has a low glucose inhibitory domain (LID) that restrains the transactivation domain when glucose catabolism is minimal. A novel isoform of ChREBP (ChREBPβ) was recently described that lacks the LID domain and is therefore constitutively and more potently active. ChREBPβ has not been described in β-cells nor has its role in glucose-stimulated proliferation been determined. We found that ChREBPβ is highly expressed in response to glucose, particularly with prolonged culture in hyperglycemic conditions. In addition, small interfering RNAs that knocked down ChREBPβ transcripts without affecting ChREBPα expression or activity decreased glucose-stimulated expression of carbohydrate response element–containing genes and glucose-stimulated proliferation in INS-1 cells and in isolated rat islets. Quantitative chromatin immunoprecipitation, electrophoretic mobility shift assays, and luciferase reporter assays were used to demonstrate that ChREBP binds to a newly identified powerful carbohydrate response element in β-cells and hepatocytes, distinct from that in differentiated 3T3-L1 adipocytes. We conclude that ChREBPβ contributes to glucose-stimulated gene expression and proliferation in β-cells, with recruitment of ChREBPα to tissue-specific elements of the ChREBPβ isoform promoter.

38 citations


Cited by
More filters
Journal Article
TL;DR: The role of thrombin in such processes as wound healing and the evidence implicating PAR-1 in vascular disorders and cancer are described and advances in the understanding ofPAR-1-mediated intracellular signaling and receptor desensitization are identified.

922 citations

Journal ArticleDOI
TL;DR: The effects of the strongly interacting pair of Cdr1as/miR-7 on insulin secretion, which may become a new target for improving β cell function in diabetes, are revealed.
Abstract: Among the identified thousands of circular RNAs (circRNA) in humans and animals, Cdr1as (also known as CiRS-7) was recently demonstrated to act as a powerful miR-7 sponge/inhibitor in developing midbrain of zebrafish, suggesting a novel mechanism for regulating microRNA functions. MiR-7 is abundantly expressed in islet cells, but overexpressing miR-7 in transgenic mouse β cells causes diabetes. Therefore, we infer that Cdr1as expression may inhibit miR-7 function in islet cells, which in turn improves insulin secretion. Here, we show the first characterization of Cdr1as expression in islet cells, which was upregulated by long-term forskolin and PMA stimulation, but not high glucose, indicating the involvement of cAMP and PKC pathways. Remarkably, both insulin content and secretion were significantly increased by overexpression of Cdr1as in islet cells. We further identified a new target Myrip in the Cdr1as/miR-7 pathway that regulates insulin granule secretion, and also another target Pax6 that enhances insulin transcription. Taken together, our findings revealed the effects of the strongly interacting pair of Cdr1as/miR-7 on insulin secretion, which may become a new target for improving β cell function in diabetes.

434 citations

Journal ArticleDOI
TL;DR: The data show that the path from genetic variation (SNP) to gene expression is more complex than hitherto often assumed, and that genetic variation can also influence function of a gene by influencing exon usage or splice isoforms (sQTL), allelic imbalance, RNA editing, and expression of noncoding RNAs.
Abstract: Genetic variation can modulate gene expression, and thereby phenotypic variation and susceptibility to complex diseases such as type 2 diabetes (T2D). Here we harnessed the potential of DNA and RNA sequencing in human pancreatic islets from 89 deceased donors to identify genes of potential importance in the pathogenesis of T2D. We present a catalog of genetic variants regulating gene expression (eQTL) and exon use (sQTL), including many long noncoding RNAs, which are enriched in known T2D-associated loci. Of 35 eQTL genes, whose expression differed between normoglycemic and hyperglycemic individuals, siRNA of tetraspanin 33 (TSPAN33), 5′-nucleotidase, ecto (NT5E), transmembrane emp24 protein transport domain containing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1 cells resulted in reduced glucose-stimulated insulin secretion. In addition, we provide a genome-wide catalog of allelic expression imbalance, which is also enriched in known T2D-associated loci. Notably, allelic imbalance in paternally expressed gene 3 (PEG3) was associated with its promoter methylation and T2D status. Finally, RNA editing events were less common in islets than previously suggested in other tissues. Taken together, this study provides new insights into the complexity of gene regulation in human pancreatic islets and better understanding of how genetic variation can influence glucose metabolism.

403 citations

Journal ArticleDOI
TL;DR: The rapidly expanding field of adipose tissue as an endocrine organ is explored, and how adipOSE tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes is explored.
Abstract: Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis.

319 citations

Journal ArticleDOI
TL;DR: Replicating aspects of endocrine cell clustering permits the generation of stem-cell-derived β cells that resemble their endogenous counterparts, including robust dynamic insulin secretion and mitochondrial oxidative respiration.
Abstract: Despite advances in the differentiation of insulin-producing cells from human embryonic stem cells, the generation of mature functional β cells in vitro has remained elusive. To accomplish this goal, we have developed cell culture conditions to closely mimic events occurring during pancreatic islet organogenesis and β cell maturation. In particular, we have focused on recapitulating endocrine cell clustering by isolating and reaggregating immature β-like cells to form islet-sized enriched β-clusters (eBCs). eBCs display physiological properties analogous to primary human β cells, including robust dynamic insulin secretion, increased calcium signalling in response to secretagogues, and improved mitochondrial energization. Notably, endocrine cell clustering induces metabolic maturation by driving mitochondrial oxidative respiration, a process central to stimulus–secretion coupling in mature β cells. eBCs display glucose-stimulated insulin secretion as early as three days after transplantation in mice. In summary, replicating aspects of endocrine cell clustering permits the generation of stem-cell-derived β cells that resemble their endogenous counterparts. Nair et al. report the generation of human ESC-derived mature and functional β cells in vitro with a culture system including a step to induce clustering of immature β-like cells.

300 citations