scispace - formally typeset
Search or ask a question
Author

Liping Ye

Bio: Liping Ye is an academic researcher from Wuhan University. The author has contributed to research in topics: Physics & Topological insulator. The author has an hindex of 10, co-authored 15 publications receiving 1103 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, valley transport of sound is reported for a macroscopic triangular-lattice array of rod-like scatterers in a 2D air waveguide.
Abstract: Valleytronics — exploiting a system’s pseudospin degree of freedom — is being increasingly explored in sonic crystals. Now, valley transport of sound is reported for a macroscopic triangular-lattice array of rod-like scatterers in a 2D air waveguide.

683 citations

Journal ArticleDOI
01 Aug 2018-Nature
TL;DR: Negative refraction of topological surface waves hosted by a Weyl phononic crystal—an acoustic analogue of the recently discovered Weyl semimetals8–12—is reported, whereby no reflection is allowed, at certain facets of the crystal and positive refraction at others.
Abstract: Reflection and refraction of waves occur at the interface between two different media. These two fundamental interfacial wave phenomena form the basis of fabricating various wave components, such as optical lenses. Classical refraction—now referred to as positive refraction—causes the transmitted wave to appear on the opposite side of the interface normal compared to the incident wave. By contrast, negative refraction results in the transmitted wave emerging on the same side of the interface normal. It has been observed in artificial materials1–5, following its theoretical prediction6, and has stimulated many applications including super-resolution imaging7. In general, reflection is inevitable during the refraction process, but this is often undesirable in designing wave functional devices. Here we report negative refraction of topological surface waves hosted by a Weyl phononic crystal—an acoustic analogue of the recently discovered Weyl semimetals8–12. The interfaces at which this topological negative refraction occurs are one-dimensional edges separating different facets of the crystal. By tailoring the surface terminations of the Weyl phononic crystal, constant-frequency contours of surface acoustic waves can be designed to produce negative refraction at certain interfaces, while positive refraction is realized at different interfaces within the same sample. In contrast to the more familiar behaviour of waves at interfaces, unwanted reflection can be prevented in our crystal, owing to the open nature of the constant-frequency contours, which is a hallmark of the topologically protected surface states in Weyl crystals8–12. Sound waves in a specially designed crystal undergo ‘topologically protected’ negative refraction, whereby no reflection is allowed, at certain facets of the crystal and positive refraction at others.

240 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an experimental observation of acoustic vortex states in sonic crystals, where the vortex chirality forms a good carrier of information for sound and a peculiar beam-splitting behavior is observed.
Abstract: As one of the most common waves in daily life, scalar sound is not easy to control by external fields since it lacks the intrinsic degrees of freedom such as the charge and spin in electrons. Here, the authors present an experimental observation of acoustic vortex states in sonic crystals, where the vortex chirality forms a good carrier of information for sound. By selectively exciting such novel states, they have fabricated a lattice array of sound vortices, and controlled the vortex chirality according to the operating frequency or incident direction of external sound. Furthermore, a peculiar beam-splitting behavior is observed, where the two spatially separated sound beams carry opposite vortex chirality, as manifested in the image here.

101 citations

Journal ArticleDOI
TL;DR: Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in an airborne environment as discussed by the authors, which is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses.
Abstract: Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

95 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the first experimental realization of a giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to acoustic graphene.
Abstract: Many intriguing phenomena occur for electrons under strong magnetic fields. Recently, it was proposed that an appropriate strain texture in graphene can induce a synthetic gauge field, in which the electrons behave like in a real magnetic field. This opened the door to control quantum transport by mechanical means and to explore unprecedented physics in high-field regime. Such studies have been achieved in molecular and photonic lattices. Here we report the first experimental realization of giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to acoustic graphene. Benefited from the controllability of our macroscopic platform, we observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive before owing to the challenge in creating large-area uniform pseudomagnetic fields. These results, highly consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings, conceptually novel in acoustics, may offer new opportunities to manipulate sound.

81 citations


Cited by
More filters
01 Feb 2012
TL;DR: In this article, the pseudorelativistic physics of graphene near the Fermi level can be extended to three dimensional (3D) materials, and particular space groups also allow 3D Dirac points as symmetry protected degeneracies.
Abstract: We show that the pseudorelativistic physics of graphene near the Fermi level can be extended to three dimensional (3D) materials. Unlike in phase transitions from inversion symmetric topological to normal insulators, we show that particular space groups also allow 3D Dirac points as symmetry protected degeneracies. We provide criteria necessary to identify these groups and, as an example, present ab initio calculations of β-cristobalite BiO(2) which exhibits three Dirac points at the Fermi level. We find that β-cristobalite BiO(2) is metastable, so it can be physically realized as a 3D analog to graphene.

763 citations

Journal ArticleDOI
TL;DR: In this paper, the role of topology in non-Hermitian (NH) systems and its far-reaching physical consequences observable in a range of dissipative settings are reviewed.
Abstract: The current understanding of the role of topology in non-Hermitian (NH) systems and its far-reaching physical consequences observable in a range of dissipative settings are reviewed. In particular, how the paramount and genuinely NH concept of exceptional degeneracies, at which both eigenvalues and eigenvectors coalesce, leads to phenomena drastically distinct from the familiar Hermitian realm is discussed. An immediate consequence is the ubiquitous occurrence of nodal NH topological phases with concomitant open Fermi-Seifert surfaces, where conventional band-touching points are replaced by the aforementioned exceptional degeneracies. Furthermore, new notions of gapped phases including topological phases in single-band systems are detailed, and the manner in which a given physical context may affect the symmetry-based topological classification is clarified. A unique property of NH systems with relevance beyond the field of topological phases consists of the anomalous relation between bulk and boundary physics, stemming from the striking sensitivity of NH matrices to boundary conditions. Unifying several complementary insights recently reported in this context, a picture of intriguing phenomena such as the NH bulk-boundary correspondence and the NH skin effect is put together. Finally, applications of NH topology in both classical systems including optical setups with gain and loss, electric circuits, and mechanical systems and genuine quantum systems such as electronic transport settings at material junctions and dissipative cold-atom setups are reviewed.

758 citations

Journal ArticleDOI
TL;DR: A second-order topological insulator in an acoustical metamaterial with a breathing kagome lattice, supporting one-dimensional edge states and zero-dimensional corner states is demonstrated, and shape dependence allows corner states to act as topologically protected but reconfigurable local resonances.
Abstract: Higher-order topological insulators1–5 are a family of recently predicted topological phases of matter that obey an extended topological bulk–boundary correspondence principle. For example, a two-dimensional (2D) second-order topological insulator does not exhibit gapless one-dimensional (1D) topological edge states, like a standard 2D topological insulator, but instead has topologically protected zero-dimensional (0D) corner states. The first prediction of a second-order topological insulator1, based on quantized quadrupole polarization, was demonstrated in classical mechanical6 and electromagnetic7,8 metamaterials. Here we experimentally realize a second-order topological insulator in an acoustic metamaterial, based on a ‘breathing’ kagome lattice9 that has zero quadrupole polarization but a non-trivial bulk topology characterized by quantized Wannier centres2,9,10. Unlike previous higher-order topological insulator realizations, the corner states depend not only on the bulk topology but also on the corner shape; we show experimentally that they exist at acute-angled corners of the kagome lattice, but not at obtuse-angled corners. This shape dependence allows corner states to act as topologically protected but reconfigurable local resonances. A second-order topological insulator in an acoustical metamaterial with a breathing kagome lattice, supporting one-dimensional edge states and zero-dimensional corner states is demonstrated.

591 citations

Journal ArticleDOI
01 Apr 2019
TL;DR: In this paper, the essential physical concepts that underpin various classes of topological phenomena realized in acoustic and mechanical systems are introduced, including Dirac points, the quantum Hall, quantum spin Hall and valley Hall effects, Floquet topological phases, 3D gapless states and Weyl crystals.
Abstract: The study of classical wave physics has been reinvigorated by incorporating the concept of the geometric phase, which has its roots in optics, and topological notions that were previously explored in condensed matter physics. Recently, sound waves and a variety of mechanical systems have emerged as excellent platforms that exemplify the universality and diversity of topological phases. In this Review, we introduce the essential physical concepts that underpin various classes of topological phenomena realized in acoustic and mechanical systems: Dirac points, the quantum Hall, quantum spin Hall and valley Hall effects, Floquet topological phases, 3D gapless states and Weyl crystals. This Review describes topological phenomena that can be realized in acoustic and mechanical systems. Methods of symmetry breaking are described, along with the consequences and rich phenomena that emerge.

535 citations