scispace - formally typeset
Search or ask a question
Author

Liqun He

Bio: Liqun He is an academic researcher from Uppsala University. The author has contributed to research in topics: Transcriptome & Podocyte. The author has an hindex of 26, co-authored 75 publications receiving 6804 citations. Previous affiliations of Liqun He include German Cancer Research Center & Science for Life Laboratory.


Papers
More filters
Journal ArticleDOI
06 Mar 2015-Science
TL;DR: Large-scale single-cell RNA sequencing is used to classify cells in the mouse somatosensory cortex and hippocampal CA1 region and found 47 molecularly distinct subclasses, comprising all known major cell types in the cortex.
Abstract: The mammalian cerebral cortex supports cognitive functions such as sensorimotor integration, memory, and social behaviors. Normal brain function relies on a diverse set of differentiated cell types, including neurons, glia, and vasculature. Here, we have used large-scale single-cell RNA sequencing (RNA-seq) to classify cells in the mouse somatosensory cortex and hippocampal CA1 region. We found 47 molecularly distinct subclasses, comprising all known major cell types in the cortex. We identified numerous marker genes, which allowed alignment with known cell types, morphology, and location. We found a layer I interneuron expressing Pax6 and a distinct postmitotic oligodendrocyte subclass marked by Itpr2. Across the diversity of cortical cell types, transcription factors formed a complex, layered regulatory code, suggesting a mechanism for the maintenance of adult cell type identity.

2,675 citations

Journal ArticleDOI
25 Nov 2010-Nature
TL;DR: A novel and critical role for pericytes is indicated in the integration of endothelial and astrocyte functions at the neurovascular unit, and in the regulation of the blood–brain barrier.
Abstract: The blood–brain barrier is a gatekeeper between the central nervous system and the rest of the body, and is made up of vascular endothelial cells. Previous work upheld the notion that the barrier was formed postnatally as a result of signalling from non-neuronal cells called astrocytes to endothelial cells. Now, two independent studies demonstrate that the barrier is in fact formed during embryogenesis, with the critical factor being the interaction between blood-vessel-surrounding cells called pericytes and epithelial cells. A better understanding of the tight relationship between pericytes, neuroendothelial cells and astrocytes in blood–brain barrier function will contribute to our understanding of the breakdown of the barrier during central nervous system injury and disease. The blood–brain barrier (BBB) is made up of vascular endothelial cells and was thought to have formed postnatally from astrocytes. Two independent studies demonstrate that this barrier forms during embryogenesis, with pericyte/endothelial cell interactions being critical to regulate the BBB during development. A better understanding of the relationship among pericytes, neuroendothelial cells and astrocytes in BBB function will contribute to our understanding of BBB breakdown during central nervous system injury and disease. The blood–brain barrier (BBB) consists of specific physical barriers, enzymes and transporters, which together maintain the necessary extracellular environment of the central nervous system (CNS)1. The main physical barrier is found in the CNS endothelial cell, and depends on continuous complexes of tight junctions combined with reduced vesicular transport2. Other possible constituents of the BBB include extracellular matrix, astrocytes and pericytes3, but the relative contribution of these different components to the BBB remains largely unknown1,3. Here we demonstrate a direct role of pericytes at the BBB in vivo. Using a set of adult viable pericyte-deficient mouse mutants we show that pericyte deficiency increases the permeability of the BBB to water and a range of low-molecular-mass and high-molecular-mass tracers. The increased permeability occurs by endothelial transcytosis, a process that is rapidly arrested by the drug imatinib. Furthermore, we show that pericytes function at the BBB in at least two ways: by regulating BBB-specific gene expression patterns in endothelial cells, and by inducing polarization of astrocyte end-feet surrounding CNS blood vessels. Our results indicate a novel and critical role for pericytes in the integration of endothelial and astrocyte functions at the neurovascular unit, and in the regulation of the BBB.

2,182 citations

Journal ArticleDOI
14 Feb 2018-Nature
TL;DR: The transcriptional basis of the gradual phenotypic change along the arteriovenous axis is uncovered and unexpected cell type differences are revealed: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells.
Abstract: Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited Here, using vascular sin

1,151 citations

Journal ArticleDOI
TL;DR: The dataset constitutes a comprehensive molecular atlas of vascular and vessel-associated cell types in the mouse brain and lung, and as such provides a strong foundation for future studies of vascular development and diseases.
Abstract: Vascular diseases are major causes of death, yet our understanding of the cellular constituents of blood vessels, including how differences in their gene expression profiles create diversity in vascular structure and function, is limited. In this paper, we describe a single-cell RNA sequencing (scRNA-seq) dataset that defines vascular and vessel-associated cell types and subtypes in mouse brain and lung. The dataset contains 3,436 single cell transcriptomes from mouse brain, which formed 15 distinct clusters corresponding to cell (sub)types, and another 1,504 single cell transcriptomes from mouse lung, which formed 17 cell clusters. In order to allow user-friendly access to our data, we constructed a searchable database (http://betsholtzlab.org/VascularSingleCells/database.html). Our dataset constitutes a comprehensive molecular atlas of vascular and vessel-associated cell types in the mouse brain and lung, and as such provides a strong foundation for future studies of vascular development and diseases.

264 citations

Journal ArticleDOI
TL;DR: Using single-cell RNA sequencing and tissue imaging, the authors provide a molecular basis for cell type classification and reveal inter- and intra-organ diversity of these cell types.
Abstract: Many important cell types in adult vertebrates have a mesenchymal origin, including fibroblasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes. To define and distinguish fibroblasts from vascular mural cells have remained challenging. Here, using single-cell RNA sequencing and tissue imaging, the authors provide a molecular basis for cell type classification and reveal inter- and intra-organ diversity of these cell types.

263 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
15 Jun 2017-Cell
TL;DR: A novel microglia type associated with neurodegenerative diseases (DAM) is described and it is revealed that the DAM program is activated in a two-step process that involves downregulation of microglian checkpoints, followed by activation of a Trem2-dependent program.

2,854 citations

Journal ArticleDOI
TL;DR: On a compendium of single-cell data from tumors and brain, it is demonstrated that cis-regulatory analysis can be exploited to guide the identification of transcription factors and cell states.
Abstract: We present SCENIC, a computational method for simultaneous gene regulatory network reconstruction and cell-state identification from single-cell RNA-seq data (http://scenicaertslaborg) On a compendium of single-cell data from tumors and brain, we demonstrate that cis-regulatory analysis can be exploited to guide the identification of transcription factors and cell states SCENIC provides critical biological insights into the mechanisms driving cellular heterogeneity

2,277 citations

Journal ArticleDOI
TL;DR: Mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer's disease, are examined, and therapeutic opportunities relating to these neurovascular deficits are highlighted.
Abstract: The neurovascular unit (NVU) comprises brain endothelial cells, pericytes or vascular smooth muscle cells, glia and neurons. The NVU controls blood-brain barrier (BBB) permeability and cerebral blood flow, and maintains the chemical composition of the neuronal 'milieu', which is required for proper functioning of neuronal circuits. Recent evidence indicates that BBB dysfunction is associated with the accumulation of several vasculotoxic and neurotoxic molecules within brain parenchyma, a reduction in cerebral blood flow, and hypoxia. Together, these vascular-derived insults might initiate and/or contribute to neuronal degeneration. This article examines mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer's disease, and highlights therapeutic opportunities relating to these neurovascular deficits.

2,256 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations