scispace - formally typeset
Search or ask a question
Author

Lirong Liang

Bio: Lirong Liang is an academic researcher from University of Macau. The author has contributed to research in topics: Materials science & Thermoelectric effect. The author has an hindex of 9, co-authored 14 publications receiving 452 citations. Previous affiliations of Lirong Liang include Shenzhen University & Chinese Academy of Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a large-area, stretchable, super flexible and mechanically stable thermoelectric (TE) films of polymer/carbon nanotube composites are achieved by common vacuum filtration.
Abstract: Recently, due to their unique advantages over inorganic materials, organic polymer thermoelectric (TE) materials have received considerable attention. However, most studies focus on TE performance enhancement. So far, little attention has been paid to large-area preparation, stretchability, super flexibility and mechanical stability, although these are the intrinsic advantages of polymer materials. Here we report for the first time large-area, stretchable, super flexible and mechanically stable TE films of polymer/carbon nanotube composites. Mechanically stretchable films with a diameter of ∼18 cm are achieved by common vacuum filtration, whose thicknesses and sizes can be conveniently adjusted. Despite direct observations of films under various deformations of bending, rolling or twisting, quantitative measurements of minimum bending radii (<0.6 mm) further confirm the super flexibility. More importantly, after mechanical bending or stretching, no obvious deterioration of TE performance is found. Our findings represent a novel direction of polymer TE materials, and will speed up their applications.

143 citations

Journal ArticleDOI
TL;DR: In this paper, the controlled synthesis and morphological characterization of polypyrrole (PPy) nanostructures are systematically studied by adjusting the experimental parameters, including oxidant type, oxidant concentration, polymerization period as well as reaction medium.
Abstract: Controlled synthesis of various nanostructures of polypyrrole (PPy) and their thermoelectric performances have been reported. First, the controlled synthesis and morphological characterization of PPy nanostructures are systematically studied by adjusting the experimental parameters. The effects of oxidant type, oxidant concentration, polymerization period as well as reaction medium are examined. Then, the thermoelectric performances of the as-obtained PPy nanostructures are measured in detail. Finally, the level of doping is calculated by X-ray photoelectron spectra. The relation between PPy nanostructures and their thermoelectric performances has been discussed. The present study will benefit the development of novel organic thermoelectric materials by a morphological design strategy, will deepen our understanding towards structure–thermoelectric function relationship, and will be helpful for the future application of organic polymer thermoelectric materials.

117 citations

Journal ArticleDOI
TL;DR: In this paper, a new morphology design strategy was proposed to enhance the TE performance by a unique layered morphology containing nanosheets of single-walled carbon nanotubes (SWCNTs) sandwiched by polypyrrole (PPy) nanowires.

107 citations

Journal ArticleDOI
TL;DR: In this paper, a unique layered morphology of polypyrrole/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/single-walled carbon nanotube (PPy/PEDOT:PSS/SWCNT) ternary TE composites are designed using 1D nanostruture of PPy as template.

69 citations

Journal ArticleDOI
TL;DR: In this paper, a three-dimensional spring-like thermoelectric device (S-TED) with fundamantal dual elastomer layers and air gaps is proposed.

66 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review aims to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics.
Abstract: The long-standing popularity of thermoelectric materials has contributed to the creation of various thermoelectric devices and stimulated the development of strategies to improve their thermoelectric performance. In this review, we aim to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics, including structural design (point defects, dislocations, interfaces, inclusions, and pores), multidimensional design (quantum dots/wires, nanoparticles, nanowires, nano- or microbelts, few-layered nanosheets, nano- or microplates, thin films, single crystals, and polycrystalline bulks), and advanced device design (thermoelectric modules, miniature generators and coolers, and flexible thermoelectric generators). The outline of each strategy starts with a concise presentation of their fundamentals and carefully selected examples. In the end, we point out the controversies, challenges, and outlooks toward the future development of thermoelectric materials and devices. Overall, this review will serve to help materials scientists, chemists, and physicists, particularly students and young researchers, in selecting suitable strategies for the improvement of thermoelectrics and potentially other relevant energy conversion technologies.

951 citations

Journal ArticleDOI
TL;DR: With worldwide efforts, innovations in chemistry and materials elaborated in this review will push forward the frontiers of smart textiles, which will soon revolutionize the authors' lives in the era of Internet of Things.
Abstract: Textiles have been concomitant of human civilization for thousands of years. With the advances in chemistry and materials, integrating textiles with energy harvesters will provide a sustainable, environmentally friendly, pervasive, and wearable energy solution for distributed on-body electronics in the era of Internet of Things. This article comprehensively and thoughtfully reviews research activities regarding the utilization of smart textiles for harvesting energy from renewable energy sources on the human body and its surroundings. Specifically, we start with a brief introduction to contextualize the significance of smart textiles in light of the emerging energy crisis, environmental pollution, and public health. Next, we systematically review smart textiles according to their abilities to harvest biomechanical energy, body heat energy, biochemical energy, solar energy as well as hybrid forms of energy. Finally, we provide a critical analysis of smart textiles and insights into remaining challenges and future directions. With worldwide efforts, innovations in chemistry and materials elaborated in this review will push forward the frontiers of smart textiles, which will soon revolutionize our lives in the era of Internet of Things.

536 citations

Journal ArticleDOI
TL;DR: This work stresses the importance of developing CP films and reveals their critical role in the evolution of these next‐generation devices featuring wearable, deformable, printable, ultrathin, and see‐through characteristics.
Abstract: Substantial effort has been devoted to both scientific and technological developments of wearable, flexible, semitransparent, and sensing electronics (e.g., organic/perovskite photovoltaics, organic thin-film transistors, and medical sensors) in the past decade. The key to realizing those functionalities is essentially the fabrication of conductive electrodes with desirable mechanical properties. Conductive polymers (CPs) of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) have emerged to be the most promising flexible electrode materials over rigid metallic oxides and play a critical role in these unprecedented devices as transparent electrodes, hole transport layers, interconnectors, electroactive layers, or motion-sensing conductors. Here, the current status of research on PEDOT:PSS is summarized including various approaches to boosting the electrical conductivity and mechanical compliance and stability, directly linked to the underlying mechanism of the performance enhancements. Along with the basic principles, the most cutting edge-progresses in devices with PEDOT:PSS are highlighted. Meanwhile, the advantages and plausible problems of the CPs and as-fabricated devices are pointed out. Finally, new perspectives are given for CP modifications and device fabrications. This work stresses the importance of developing CP films and reveals their critical role in the evolution of these next-generation devices featuring wearable, deformable, printable, ultrathin, and see-through characteristics.

478 citations

Journal ArticleDOI
TL;DR: Progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoeLECTric devices prepared from these materials is reviewed in detail, illuminates the tremendous potential that carbon-nanotubes-based materials and composites have for producing high-performance next-generation devices for thermoelectedric-energy harvesting.
Abstract: Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

433 citations

Journal ArticleDOI
TL;DR: Recent advances in the development of new materials, as well as the engineering of well-characterized materials for the repurposing in applications of flexible and stretchable electronics are covered.
Abstract: This article reviews several classes of compliant materials that can be utilized to fabricate electronic muscles and skins. Different classes of materials range from compliant conductors, semiconductors, to dielectrics, all of which play a vital and cohesive role in the development of next generation electronics. This paper covers recent advances in the development of new materials, as well as the engineering of well-characterized materials for the repurposing in applications of flexible and stretchable electronics. In addition to compliant materials, this article further discusses the use of these materials for integrated systems to develop soft sensors and actuators. These new materials and new devices pave the way for a new generation of electronics that will change the way we see and interact with our devices for decades to come.

395 citations