scispace - formally typeset
Search or ask a question
Author

Lisa Bang

Bio: Lisa Bang is an academic researcher from Geisinger Health System. The author has contributed to research in topics: Epigenomics & DNA methylation. The author has an hindex of 6, co-authored 8 publications receiving 108 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The network approach applied in this study can be used to uncover interactions between diseases as a result of their shared, potentially pleiotropic SNPs, and advance clinical research and even clinical practice by accelerating the understanding of disease mechanisms on the basis of similar underlying genetic associations.
Abstract: Phenome-wide association studies (PheWASs) have been a useful tool for testing associations between genetic variations and multiple complex traits or diagnoses. Linking PheWAS-based associations between phenotypes and a variant or a genomic region into a network provides a new way to investigate cross-phenotype associations, and it might broaden the understanding of genetic architecture that exists between diagnoses, genes, and pleiotropy. We created a network of associations from one of the largest PheWASs on electronic health record (EHR)-derived phenotypes across 38,682 unrelated samples from the Geisinger's biobank; the samples were genotyped through the DiscovEHR project. We computed associations between 632,574 common variants and 541 diagnosis codes. Using these associations, we constructed a "disease-disease" network (DDN) wherein pairs of diseases were connected on the basis of shared associations with a given genetic variant. The DDN provides a landscape of intra-connections within the same disease classes, as well as inter-connections across disease classes. We identified clusters of diseases with known biological connections, such as autoimmune disorders (type 1 diabetes, rheumatoid arthritis, and multiple sclerosis) and cardiovascular disorders. Previously unreported relationships between multiple diseases were identified on the basis of genetic associations as well. The network approach applied in this study can be used to uncover interactions between diseases as a result of their shared, potentially pleiotropic SNPs. Additionally, this approach might advance clinical research and even clinical practice by accelerating our understanding of disease mechanisms on the basis of similar underlying genetic associations.

47 citations

Journal ArticleDOI
TL;DR: This study proposes an integrative framework to identify epigenetic interactions between methylation and miRNA associated with transcriptomic changes in bladder cancer and finds 120 genes associated with interactions between the two epigenomic components.
Abstract: One of the fundamental challenges in cancer is to detect the regulators of gene expression changes during cancer progression Through transcriptional silencing of critical cancer-related genes, epigenetic change such as DNA methylation plays a crucial role in cancer In addition, miRNA, another major component of epigenome, is also a regulator at the post-transcriptional levels that modulate transcriptome changes However, a mechanistic role of synergistic interactions between DNA methylation and miRNA as epigenetic regulators on transcriptomic changes and its association with clinical outcomes such as survival have remained largely unexplored in cancer In this study, we propose an integrative framework to identify epigenetic interactions between methylation and miRNA associated with transcriptomic changes To test the utility of the proposed framework, the bladder cancer data set, including DNA methylation, miRNA expression, and gene expression data, from The Cancer Genome Atlas (TCGA) was analyzed for this study First, we found 120 genes associated with interactions between the two epigenomic components Then, 11 significant epigenetic interactions between miRNA and methylation, which target E2F3, CCND1, UTP6, CDADC1, SLC35E3, METRNL, TPCN2, NACC2, VGLL4, and PTEN, were found to be associated with survival To this end, exploration of TCGA bladder cancer data identified epigenetic interactions that are associated with survival as potential prognostic markers in bladder cancer Given the importance and prevalence of these interactions of epigenetic events in bladder cancer it is timely to understand further how different epigenetic components interact and influence each other

45 citations

Journal ArticleDOI
TL;DR: A kernel weighted l1-regularized regression model is proposed to incorporate tumor subtype information and further reveal gene regulations affected by different breast cancer subtypes and identified subtype-specific network structures based on the associations between gene expression and DNA methylation.
Abstract: Breast cancer is a complex disease in which different genomic patterns exists depending on different subtypes Recent researches present that multiple subtypes of breast cancer occur at different rates, and play a crucial role in planning treatment To better understand underlying biological mechanisms on breast cancer subtypes, investigating the specific gene regulatory system via different subtypes is desirable Gene expression, as an intermediate phenotype, is estimated based on methylation profiles to identify the impact of epigenomic features on transcriptomic changes in breast cancer We propose a kernel weighted l1-regularized regression model to incorporate tumor subtype information and further reveal gene regulations affected by different breast cancer subtypes For the proper control of subtype-specific estimation, samples from different breast cancer subtype are learned at different rate based on target estimates Kolmogorov Smirnov test is conducted to determine learning rate of each sample from different subtype It is observed that genes that might be sensitive to breast cancer subtype show prediction improvement when estimated using our proposed method Comparing to a standard method, overall performance is also enhanced by incorporating tumor subtypes In addition, we identified subtype-specific network structures based on the associations between gene expression and DNA methylation In this study, kernel weighted lasso model is proposed for identifying subtype-specific associations between gene expressions and DNA methylation profiles Identification of subtype-specific gene expression associated with epigenomic changes might be helpful for better planning treatment and developing new therapies

20 citations

Journal ArticleDOI
TL;DR: In this article, a knowledge-based binning approach was developed for rare-variant association analysis and then applied to structural neuroimaging endophenotypes related to late-onset Alzheimer's disease (LOAD).
Abstract: Rapid advancement of next generation sequencing technologies such as whole genome sequencing (WGS) has facilitated the search for genetic factors that influence disease risk in the field of human genetics. To identify rare variants associated with human diseases or traits, an efficient genome-wide binning approach is needed. In this study we developed a novel biological knowledge-based binning approach for rare-variant association analysis and then applied the approach to structural neuroimaging endophenotypes related to late-onset Alzheimer’s disease (LOAD). For rare-variant analysis, we used the knowledge-driven binning approach implemented in Bin-KAT, an automated tool, that provides 1) binning/collapsing methods for multi-level variant aggregation with a flexible, biologically informed binning strategy and 2) an option of performing unified collapsing and statistical rare variant analyses in one tool. A total of 750 non-Hispanic Caucasian participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort who had both WGS data and magnetic resonance imaging (MRI) scans were used in this study. Mean bilateral cortical thickness of the entorhinal cortex extracted from MRI scans was used as an AD-related neuroimaging endophenotype. SKAT was used for a genome-wide gene- and region-based association analysis of rare variants (MAF (minor allele frequency) < 0.05) and potential confounding factors (age, gender, years of education, intracranial volume (ICV) and MRI field strength) for entorhinal cortex thickness were used as covariates. Significant associations were determined using FDR adjustment for multiple comparisons. Our knowledge-driven binning approach identified 16 functional exonic rare variants in FANCC significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In addition, the approach identified 7 evolutionary conserved regions, which were mapped to FAF1, RFX7, LYPLAL1 and GOLGA3, significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In further analysis, the functional exonic rare variants in FANCC were also significantly associated with hippocampal volume and cerebrospinal fluid (CSF) Aβ1–42 (p-value < 0.05). Our novel binning approach identified rare variants in FANCC as well as 7 evolutionary conserved regions significantly associated with a LOAD-related neuroimaging endophenotype. FANCC (fanconi anemia complementation group C) has been shown to modulate TLR and p38 MAPK-dependent expression of IL-1β in macrophages. Our results warrant further investigation in a larger independent cohort and demonstrate that the biological knowledge-driven binning approach is a powerful strategy to identify rare variants associated with AD and other complex disease.

15 citations

01 May 2017
TL;DR: This study developed a novel biological knowledge-based binning approach for rare-variant association analysis and then applied the approach to structural neuroimaging endophenotypes related to late-onset Alzheimer’s disease (LOAD).
Abstract: Rapid advancement of next generation sequencing technologies such as whole genome sequencing (WGS) has facilitated the search for genetic factors that influence disease risk in the field of human genetics. To identify rare variants associated with human diseases or traits, an efficient genome-wide binning approach is needed. In this study we developed a novel biological knowledge-based binning approach for rare-variant association analysis and then applied the approach to structural neuroimaging endophenotypes related to late-onset Alzheimer’s disease (LOAD). For rare-variant analysis, we used the knowledge-driven binning approach implemented in Bin-KAT, an automated tool, that provides 1) binning/collapsing methods for multi-level variant aggregation with a flexible, biologically informed binning strategy and 2) an option of performing unified collapsing and statistical rare variant analyses in one tool. A total of 750 non-Hispanic Caucasian participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort who had both WGS data and magnetic resonance imaging (MRI) scans were used in this study. Mean bilateral cortical thickness of the entorhinal cortex extracted from MRI scans was used as an AD-related neuroimaging endophenotype. SKAT was used for a genome-wide gene- and region-based association analysis of rare variants (MAF (minor allele frequency) < 0.05) and potential confounding factors (age, gender, years of education, intracranial volume (ICV) and MRI field strength) for entorhinal cortex thickness were used as covariates. Significant associations were determined using FDR adjustment for multiple comparisons. Our knowledge-driven binning approach identified 16 functional exonic rare variants in FANCC significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In addition, the approach identified 7 evolutionary conserved regions, which were mapped to FAF1, RFX7, LYPLAL1 and GOLGA3, significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In further analysis, the functional exonic rare variants in FANCC were also significantly associated with hippocampal volume and cerebrospinal fluid (CSF) Aβ1–42 (p-value < 0.05). Our novel binning approach identified rare variants in FANCC as well as 7 evolutionary conserved regions significantly associated with a LOAD-related neuroimaging endophenotype. FANCC (fanconi anemia complementation group C) has been shown to modulate TLR and p38 MAPK-dependent expression of IL-1β in macrophages. Our results warrant further investigation in a larger independent cohort and demonstrate that the biological knowledge-driven binning approach is a powerful strategy to identify rare variants associated with AD and other complex disease.

12 citations


Cited by
More filters
01 Jan 2013
TL;DR: In this article, the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs) was described, including several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA.
Abstract: We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.

2,616 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore different integrative machine learning methods which have been used to provide an in-depth understanding of biological systems during normal physiological functioning and in the presence of a disease.

164 citations

Journal ArticleDOI
TL;DR: Using PhenomeXcan results, this work successfully replicate associations from the phenome-wide association studies (PheWAS) catalog Online Mendelian Inheritance in Man, and an evidence-based curated gene list, and develops a novel Bayesian colocalization method, fast enrichment estimation aided colocalized analysis (fastENLOC), to prioritize likely causal gene-trait associations.
Abstract: Large-scale genomic and transcriptomic initiatives offer unprecedented insight into complex traits, but clinical translation remains limited by variant-level associations without biological context and lack of analytic resources. Our resource, PhenomeXcan, synthesizes 8.87 million variants from genome-wide association study summary statistics on 4091 traits with transcriptomic data from 49 tissues in Genotype-Tissue Expression v8 into a gene-based, queryable platform including 22,515 genes. We developed a novel Bayesian colocalization method, fast enrichment estimation aided colocalization analysis (fastENLOC), to prioritize likely causal gene-trait associations. We successfully replicate associations from the phenome-wide association studies (PheWAS) catalog Online Mendelian Inheritance in Man, and an evidence-based curated gene list. Using PhenomeXcan results, we provide examples of novel and underreported genome-to-phenome associations, complex gene-trait clusters, shared causal genes between common and rare diseases via further integration of PhenomeXcan with ClinVar, and potential therapeutic targets. PhenomeXcan (phenomexcan.org) provides broad, user-friendly access to complex data for translational researchers.

72 citations

Journal ArticleDOI
TL;DR: The benzoporphyrin derivative verteporfin, a disruptor of YAP/TAZ-TEAD–mediated transcription, preferentially induced apoptosis of cultured patient-derived EGFR-amplified/mutant GBM cells, and conferred significant survival benefit in an orthotopic xenograft GBM model.
Abstract: Purpose: Glioblastomas (GBMs), neoplasms derived from glia and neuroglial progenitor cells, are the most common and lethal malignant primary brain tumors diagnosed in adults, with a median survival of 14 months. GBM tumorigenicity is often driven by genetic aberrations in receptor tyrosine kinases, such as amplification and mutation of EGFR. Experimental Design: Using a Drosophila glioma model and human patient–derived GBM stem cells and xenograft models, we genetically and pharmacologically tested whether the YAP and TAZ transcription coactivators, effectors of the Hippo pathway that promote gene expression via TEA domain (TEAD) cofactors, are key drivers of GBM tumorigenicity downstream of oncogenic EGFR signaling. Results: YAP and TAZ are highly expressed in EGFR-amplified/mutant human GBMs, and their knockdown in EGFR-amplified/mutant GBM cells inhibited proliferation and elicited apoptosis. Our results indicate that YAP/TAZ-TEAD directly regulates transcription of SOX2, C-MYC, and EGFR itself to create a feedforward loop to drive survival and proliferation of human GBM cells. Moreover, the benzoporphyrin derivative verteporfin, a disruptor of YAP/TAZ-TEAD–mediated transcription, preferentially induced apoptosis of cultured patient-derived EGFR-amplified/mutant GBM cells, suppressed expression of YAP/TAZ transcriptional targets, including EGFR, and conferred significant survival benefit in an orthotopic xenograft GBM model. Our efforts led us to design and initiate a phase 0 clinical trial of Visudyne, an FDA-approved liposomal formulation of verteporfin, where we used intraoperative fluorescence to observe verteporfin uptake into tumor cells in GBM tumors in human patients. Conclusions: Together, our data suggest that verteporfin is a promising therapeutic agent for EGFR-amplified and -mutant GBM.

56 citations