scispace - formally typeset
Search or ask a question
Author

Lisa M. Eubanks

Bio: Lisa M. Eubanks is an academic researcher from Scripps Research Institute. The author has contributed to research in topics: Opioid use disorder & Loa loa. The author has an hindex of 5, co-authored 8 publications receiving 116 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Recent strides have been made in the basic understanding of the structure and function of BoNT, which have translated into widespread efforts towards the discovery of biomacromolecules and small molecules that specifically modulate BoNT activity.
Abstract: In the classic novella "The Strange Case of Dr. Jekyll and Mr. Hyde", Robert Louis Stevenson paints a stark picture of the duality of good and evil within a single man. Botulinum neurotoxin (BoNT), the most potent known toxin, possesses an analogous dichotomous nature: It shows a pronounced morbidity and mortality, but it is used with great effect in much lower doses in a wide range of clinical scenarios. Recently, tremendous strides have been made in the basic understanding of the structure and function of BoNT, which have translated into widespread efforts towards the discovery of biomacromolecules and small molecules that specifically modulate BoNT activity. Particular emphasis has been placed on the identification of inhibitors that can counteract BoNT exposure in the event of a bioterrorist attack. This Review summarizes the current advances in the development of therapeutics, including vaccines, peptides, and small-molecule inhibitors, for the prevention and treatment of botulism.

66 citations

Journal ArticleDOI
TL;DR: The development and assessment of a NATOG-based urine LFIA for onchocerciasis is reported, which accurately identified 85% of analyzed patient samples and overcomes the limitations of antibody biomarkers and PCR methodologies.
Abstract: The parasitic disease onchocerciasis is the second leading cause of preventable blindness, afflicting more than 18 million people worldwide. Despite an available treatment, ivermectin, and control efforts by the World Health Organization, onchocerciasis remains a burden in many regions. With an estimated 120 million people living in areas at risk of infection, efforts are now shifting from prevention to surveillance and elimination. The lack of a robust, point-of-care diagnostic for an active Onchocerca infection has been a limiting factor in these efforts. Previously, we reported the discovery of the biomarker N-acetyl-tyramine- O-glucuronide (NATOG) in human urine samples and its ability to track treatment progression between medicated patients relative to placebo; we also established its capability to monitor disease burden in a jird model. NATOG is a human-produced metabolite of tyramine, which itself is produced as a nematode neurotransmitter. The ability of NATOG to distinguish between active and past infection overcomes the limitations of antibody biomarkers and PCR methodologies. Lateral flow immunoassay (LFIA) diagnostics offer the versatility and simplicity to be employed in the field and are inexpensive enough to be utilized in large-scale screening efforts. Herein, we report the development and assessment of a NATOG-based urine LFIA for onchocerciasis, which accurately identified 85% of analyzed patient samples ( N = 27).

28 citations

Journal ArticleDOI
TL;DR: In this paper, N-acetyltyramine-O-glucuronide (NATOG) was used as a biomarker for tracking active onchocerciasis infections.

19 citations

Journal ArticleDOI
TL;DR: Important advances in chemical interventions for overdose reversal, strategies for opioid use disorder treatment, including immunopharmacotherapies, and next-generation alternatives for pain management will be discussed.
Abstract: The present United States opioid crisis requires urgent and innovative scientific intervention. This perspective highlights a role for the chemical sciences by expounding upon three key research areas identified as priorities by the National Institute on Drug Abuse (NIDA). Specifically, important advances in chemical interventions for overdose reversal, strategies for opioid use disorder (OUD) treatment, including immunopharmacotherapies, and next-generation alternatives for pain management will be discussed. Ultimately, progress made will be presented in light of remaining challenges for the field.

17 citations

Journal ArticleDOI
TL;DR: Findings suggest that regioselective hapten deuteration could be useful for the resurrection of previous drug of abuse vaccines that have met limited success in the past.
Abstract: The United States is in the midst of an unprecedented epidemic of opioid substance use disorder, and while pharmacotherapies including opioid agonists and antagonists have shown success, they can be inadequate and frequently result in high recidivism. With these challenges facing opioid use disorder treatments immunopharmacotherapy is being explored as an alternative therapy option and is based upon antibody-opioid sequestering to block brain entry. Development of a heroin vaccine has become a major research focal point; however, producing an efficient vaccine against heroin has been particularly challenging because of the need to generate not only a potent immune response but one against heroin and its multiple psychoactive molecules. In this study, we explored the consequence of regioselective deuteration of a heroin hapten and its impact upon the immune response against heroin and its psychoactive metabolites. Deuterium (HdAc) and cognate protium heroin (HAc) haptens were compared head to head in an inclusive vaccine study. Strikingly the HdAc vaccine granted greater efficacy in blunting heroin analgesia in murine behavioral models compared to the HAc vaccine. Binding studies confirmed that the HdAc vaccine elicited both greater quantities and equivalent or higher affinity antibodies toward heroin and 6-AM. Blood-brain biodistribution experiments corroborated these affinity tests. These findings suggest that regioselective hapten deuteration could be useful for the resurrection of previous drug of abuse vaccines that have met limited success in the past.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , the authors discuss the new developments in this area over the last years (2017-2021) and discuss the use of isotopically labeled analogues of common organic reagents.
Abstract: Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.

101 citations

Journal ArticleDOI
TL;DR: Recent findings of potential clinical importance that will advance the understanding of the effects of neuromuscular blocking agents and neuromUScular monitoring and also the management of disorders of the neuromoscular system within anaesthesia and intensive care are focused on.
Abstract: The neuromuscular junction (NMJ) is structured and powered to transduce electrical activity from the distal nerve terminal of a motor neurone via the neuromuscular cleft to the post-junctional muscle membrane to ultimately generate muscle contraction. Our understanding of this complex function has expanded over many years, and the NMJ has served as a prototype for how different synapses operate in the peripheral and central nervous systems. The NMJ has a presynaptic part which is synonymous with the distal nerve ending, being responsible for neurotransmitter synthesis, packaging into vesicles, and subsequent vesicle transportation to active release sites where vesicle docking, fusion, and release of acetylcholine and other co-released transmitters finally take place. The synaptic cleft, filled with large molecular complexes that guarantee ultrastructural NMJ arrangement and signal transduction, allows for rapid diffusion and degradation of the neurotransmitter. The postsynaptic part consists of a folded muscle membrane into which nicotinic acetylcholine receptors (nAChRs) directly opposite the presynaptic active release sites are mounted and fixed by a cytoskeleton. This specialized postsynaptic region is closely associated with the perijunctional zone where a high density of sodium channels promote and amplify the signal in order to guarantee the propagation of the electrical activity to generate muscle contraction. The transduction process is maintained at load (i.e. high stimulus frequency) by a presynaptic mechanism allowing for sustained transmitter release over time at high demand. This positive feedback mechanism relies on neuronal nAChRs present on the distal nerve terminal, whereas the continuation of the transduction process at the postsynaptic part relies on the classical muscle type nAChR. In this review, we will focus on recent findings of potential clinical importance that will advance our understanding of the effects of neuromuscular blocking agents and neuromuscular monitoring and also our management of disorders of the neuromuscular system within anaesthesia and intensive care.

100 citations

Journal ArticleDOI
TL;DR: In conclusion, botulinum toxin may cause serious adverse events, which are more common after its therapeutic use, but can also be noticed after its cosmetic use.
Abstract: Although botulinum toxin is generally considered safe, its widespread use and the constantly expanded indications raise safety issues. This study aimed to review the serious and long-term adverse events associated with the therapeutic and cosmetic use of botulinum toxin. Serious adverse events included dysphagia, respiratory compromise, generalized muscle weakness, marked bilateral ptosis, pseudoaneurysm of the frontal branch of the temporal artery, necrotizing fasciitis, sarcoidal granuloma, Fournier gangrene, and cervical kyphosis. Death was attributed to botulism or anaphylactic shock. In conclusion, botulinum toxin may cause serious adverse events, which are more common after its therapeutic use, but can also be noticed after its cosmetic use. Thorough knowledge of the anatomy of the treated muscles and of the pharmacology of the drug is imperative to avoid serious adverse events.

88 citations

Journal ArticleDOI
TL;DR: Using a single molecule assay of BoNT serotypes A and E light chain translocation through the heavy chain channel in neurons, it is discovered that toosendanin and its tetrahydrofuran analog selectively arrest the LC translocation step of intoxication with subnanomolar potency, and increase the unoccluded HC channel propensity to open with micromolar efficacy.
Abstract: Clostridium botulinum neurotoxin (BoNT) is the causative agent of botulism, a neuroparalytic disease. We describe here a semisynthetic strategy to identify inhibitors based on toosendanin, a traditional Chinese medicine reported to protect from BoNT intoxication. Using a single molecule assay of BoNT serotypes A and E light chain (LC) translocation through the heavy chain (HC) channel in neurons, we discovered that toosendanin and its tetrahydrofuran analog selectively arrest the LC translocation step of intoxication with subnanomolar potency, and increase the unoccluded HC channel propensity to open with micromolar efficacy. The inhibitory profile on LC translocation is accurately recapitulated in 2 different BoNT intoxication assays, namely the mouse protection and the primary rat spinal cord cell assays. Toosendanin has an unprecedented dual mode of action on the protein-conducting channel acting as a cargo-dependent inhibitor of translocation and as cargo-free channel activator. These results imply that the bimodal modulation by toosendanin depends on the dynamic interactions between channel and cargo, highlighting their tight interplay during the progression of LC transit across endosomes.

84 citations

Journal ArticleDOI
TL;DR: Modelling can help select the optimal strategies, but field evaluations are urgently needed to determine the relative cost-effectiveness of the strategies for the given epidemiological situation.

70 citations