scispace - formally typeset
Search or ask a question
Author

Lisa R. Hilliard

Bio: Lisa R. Hilliard is an academic researcher from University of Florida. The author has contributed to research in topics: Nanoparticle & Tetraethyl orthosilicate. The author has an hindex of 5, co-authored 6 publications receiving 1886 citations.

Papers
More filters
Journal ArticleDOI
31 Mar 2006-Langmuir
TL;DR: Using these surface-modification schemes, fluorescent dye-doped silica nanoparticles can be more readily conjugated with biomolecules and used as highly fluorescent, sensitive, and reproducible labels in bioanalytical applications.
Abstract: In this article, a systematic study of the design and development of surface-modification schemes for silica nanoparticles is presented. The nanoparticle surface design involves an optimum balance of the use of inert and active surface functional groups to achieve minimal nanoparticle aggregation and reduce nanoparticle nonspecific binding. Silica nanoparticles were prepared in a water-in-oil microemulsion and subsequently surface modified via cohydrolysis with tetraethyl orthosilicate (TEOS) and various organosilane reagents. Nanoparticles with different functional groups, including carboxylate, amine, amine/phosphonate, poly(ethylene glycol), octadecyl, and carboxylate/octadecyl groups, were produced. Aggregation studies using SEM, dynamic light scattering, and zeta potential analysis indicate that severe aggregation among amine-modified silica nanoparticles can be reduced by adding inert functional groups, such as methyl phosphonate, to the surface. To determine the effect of various surface-modificati...

792 citations

Journal ArticleDOI
TL;DR: A bioconjugated nanoparticle-based bioassay for in situ pathogen quantification down to single bacterium within 20 min, confirmed by the plate-counting method and realized by using two independent optical techniques.
Abstract: The rapid and sensitive determination of pathogenic bacteria is extremely important in biotechnology, medical diagnosis, and the current fight against bioterrorism. Current methods either lack ultrasensitivity or take a long time for analysis. Here, we report a bioconjugated nanoparticle-based bioassay for in situ pathogen quantification down to single bacterium within 20 min. The bioconjugated nanoparticle provides an extremely high fluorescent signal for bioanalysis and can be easily incorporated with biorecognition molecules, such as antibody. The antibody-conjugated nanoparticles can readily and specifically identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody–antigen interaction and recognition. The single-bacterium-detection capability within 20 min has been confirmed by the plate-counting method and realized by using two independent optical techniques. The two detection methods correlated extremely well. Furthermore, we were able to detect multiple bacterial samples with high throughput by using a 384-well microplate format. To show the usefulness of this assay, we have accurately detected 1–400 E. coli O157 bacterial cells in spiked ground beef samples. Our results demonstrate the potential for a broad application of bioconjugated nanoparticles in practical biotechnological and medical applications in various biodetection systems. The ultimate power of integrating bionanotechnology into complex biological systems will emerge as a revolutionary tool for ultrasensitive detection of disease markers and infectious agents.

556 citations

Journal ArticleDOI
04 Aug 2004-Langmuir
TL;DR: A fundamental knowledge of the synthesis and optical properties of Ru(bpy) dye-doped silica nanoparticles is provided, which can be easily manipulated, with regard to particle size and size distribution, and bioconjugated as needed for bioanalysis and bioseparation applications.
Abstract: Fluorescent labeling based on silica nanoparticles facilitates unique applications in bioanalysis and bioseparation. Dye-doped silica nanoparticles have significant advantages over single-dye labeling in signal amplification, photostability and surface modification for various biological applications. We have studied the formation of tris(2,2'-bipyridyl)dichlororuthenium(II) (Ru(bpy)) dye-doped silica nanoparticles by ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) in water-in-oil microemulsion. The fluorescence spectra, particle size, and size distribution of Ru(bpy) dye-doped silica nanoparticles were examined as a function of reactant concentrations (TEOS and ammonium hydroxide), nature of surfactant molecules, and molar ratios of water to surfactant (R) and cosurfactant to surfactant (p). The particle size and fluorescence spectra were dependent upon the type of microemulsion system chosen. The particle size was found to decrease with an increase in concentration of ammonium hydroxide and increase in water to surfactant molar ratio (R) and cosurfactant to surfactant molar ratio (p). This optimization study of the preparation of dye-doped silica nanoparticles provides a fundamental knowledge of the synthesis and optical properties of Ru(bpy) dye-doped silica nanoparticles. With this information, these nanoparticles can be easily manipulated, with regard to particle size and size distribution, and bioconjugated as needed for bioanalysis and bioseparation applications.

479 citations

Journal ArticleDOI
TL;DR: The oligonucleotide-modified silica nanoparticles provide an efficient substrate for hybridization and can be used in the development of DNA biosensors and biochips.

146 citations

Journal ArticleDOI
TL;DR: A simple and portable flow channel optical detection system combined with bioconjugated luminescent nanoparticles allows the rapid detection of single bacterial cells without sample enrichment.
Abstract: A simple and portable flow channel optical detection system combined with bioconjugated luminescent nanoparticles allows the rapid detection of single bacterial cells without sample enrichment. The optical system is designed to have single-molecule-detection capability in a microcapillary flow channel by decreasing the laser excitation probe volume to a few picoliters, which consequently results in a low background. Specific monoclonal antibodies were immobilized on nanoparticles to form nanoparticle-antibody conjugates. The bioconjugated nanoparticles bind to the target bacteria when they recognize the antigen on the bacterium surface, thus providing a bright luminescent signal for the detection of individual bacteria cells. The high sensitivity provided by the luminescent and photostable silica nanoparticles eliminates the need for further enrichment of bacteria samples and signal amplification. This flow channel detection system is convenient and allows the detection of single bacterial cells within a few minutes.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Nathaniel L. Rosi focuses on the rational assembly of DNA-modified nanostructures into larger-scale materials and their roles in biodiagnostic screening for nucleic acids.
Abstract: In the last 10 years the field of molecular diagnostics has witnessed an explosion of interest in the use of nanomaterials in assays for gases, metal ions, and DNA and protein markers for many diseases. Intense research has been fueled by the need for practical, robust, and highly sensitive and selective detection agents that can address the deficiencies of conventional technologies. Chemists are playing an important role in designing and fabricating new materials for application in diagnostic assays. In certain cases assays based upon nanomaterials have offered significant advantages over conventional diagnostic systems with regard to assay sensitivity, selectivity, and practicality. Some of these new methods have recently been reviewed elsewhere with a focus on the materials themselves or as subclassifications in more generalized overviews of biological applications of nanomaterials.1-7 We intend to review some of the major advances and milestones in the field of detection systems based upon nanomaterials and their roles in biodiagnostic screening for nucleic acids, * To whom correspondence should be addressed. Phone: 847-4913907. Fax: 847-467-5123. E-mail: chadnano@northwestern.edu. Nathaniel L. Rosi earned his B.A. degree at Grinnell College (1999) and his Ph.D. degree from the University of Michigan (2003), where he studied the design, synthesis, and gas storage applications of metal−organic frameworks under the guidance of Professor Omar M. Yaghi. In 2003 he began postdoctoral studies as a member of Professor Mirkin’s group at Northwestern University. His current research focuses on the rational assembly of DNA-modified nanostructures into larger-scale materials.

4,308 citations

Journal ArticleDOI
01 May 2008-ACS Nano
TL;DR: In this article, superparamagnetic iron oxide nanocrystals were encapsulated inside mesostructured silica spheres that were labeled with fluorescent dye molecules and coated with hydrophilic groups to prevent aggregation.
Abstract: Drug delivery, magnetic resonance and fluorescence imaging, magnetic manipulation, and cell targeting are simultaneously possible using a multifunctional mesoporous silica nanoparticle. Superparamagnetic iron oxide nanocrystals were encapsulated inside mesostructured silica spheres that were labeled with fluorescent dye molecules and coated with hydrophilic groups to prevent aggregation. Water-insoluble anticancer drugs were delivered into human cancer cells; surface conjugation with cancer-specific targeting agents increased the uptake into cancer cells relative to that in non-cancerous fibroblasts. The highly versatile multifunctional nanoparticles could potentially be used for simultaneous imaging and therapeutic applications.

1,716 citations

Journal ArticleDOI
TL;DR: The results confirmed that E. coli cells after contact with DEG and ZnO were damaged showing a Gram-negative triple membrane disorganization, which causes the increase of membrane permeability leading to accumulation ofZnO nanoparticles in the bacterial membrane and also cellular internalization of these nanoparticles.
Abstract: We report here preliminary studies of biocidal effects and cellular internalization of ZnO nanoparticles on Escherichia coli bacteria. ZnO nanoparticles were synthesized in di(ethylene glycol) (DEG) medium by forced hydrolysis of ionic Zn2+ salts. Particle size and shape were controlled by addition of small molecules and macromolecules such as tri-n-octylphosphine oxide, sodium dodecyl sulfate, polyoxyethylene stearyl ether, and bovine serum albumin. Transmission electron microscopy (TEM) and X-ray diffraction analyses were used to characterize particle structure, size, and morphology. Bactericidal tests were performed in Luria-Bertani medium on solid agar plates and in liquid systems with different concentrations of small and macromolecules and also with ZnO nanoparticles. TEM analyses of bacteria thin sections were used to study biocidal action of ZnO materials. The results confirmed that E. coli cells after contact with DEG and ZnO were damaged showing a Gram-negative triple membrane disorganization. This behavior causes the increase of membrane permeability leading to accumulation of ZnO nanoparticles in the bacterial membrane and also cellular internalization of these nanoparticles.

1,541 citations

Journal ArticleDOI
TL;DR: This review summarizes emerging efforts in combating against infectious diseases, particularly using antimicrobial NPs and antibiotics delivery systems as new tools to tackle the current challenges in treating infectious diseases.

1,493 citations

Journal ArticleDOI
TL;DR: This Review provides an introduction to nanoparticle–biomolecular interactions as well as recent applications of nanoparticles in biological sensing, delivery, and imaging of live cells and tissues.
Abstract: The wide variety of core materials available, coupled with tunable surface properties, make nanoparticles an excellent platform for a broad range of biological and biomedical applications. This Review provides an introduction to nanoparticle–biomolecular interactions as well as recent applications of nanoparticles in biological sensing, delivery, and imaging of live cells and tissues.

1,399 citations