scispace - formally typeset
Search or ask a question
Author

Lisza Duermeyer

Bio: Lisza Duermeyer is an academic researcher from University of Toronto. The author has contributed to research in topics: Germination & Endosperm. The author has an hindex of 3, co-authored 3 publications receiving 205 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The role of the endosperm during seed germination has been investigated in this article. But, it is not known whether the embryo secretes signals to the endo-sperm to induce the degradation of the seed reserve and to promote endo weakening during germination.
Abstract: In angiosperms, a double fertilization event initiates the development of two distinct structures, the embryo and endosperm. The endosperm plays an important role in supporting embryonic growth by supplying nutrients, protecting the embryo and controlling embryo growth by acting as a mechanical barrier during seed development and germination. Its structure and function in the mature dry seed is divergent and specialized among different plant species. A subset of endospermic tissues are composed of living cells even after seed maturation, and play an active role in the regulation of seed germination. Transcriptome analysis has provided new insights into the regulatory functions of the endosperm during seed germination. It is well known that the embryo secretes signals to the endosperm to induce the degradation of the seed reserve and to promote endosperm weakening during germination. Recent advances in seed biology have shown that the endosperm is capable of sensing environmental signals, and can produce and secrete signals to regulate the growth of the embryo. Thus, germination is a systemic response that involves bidirectional interactions between the embryo and endosperm.

167 citations

Journal ArticleDOI
TL;DR: Tiling array expression data suggests that vacuolation is a consequence, and not a trigger, of germination, and a gene for δVPE (vacuolar processing enzyme), a caspase-1-like cysteine proteinase involved in cell death, is expressed specifically in endosperms of 24 h-imbibed seeds.
Abstract: Seed germination is a result of the competition of embryonic growth potential and mechanical constraint by surrounding tissues such as the endosperm. To understand the processes occurring in the endosperm during germination, we analyzed tiling array expression data on dissected endosperm and embryo from 6 and 24 h-imbibed Arabidopsis seeds. The genes preferentially expressed in the endosperm of both 6 and 24 h-imbibed seeds were enriched for those related to cell wall biosynthesis/modifications, flavonol biosynthesis, defense responses and cellular transport. Loss of function of AtXTH31/XTR8, an endosperm-specific gene for a putative xyloglucan endotransglycosylase/hydrolase, led to faster germination. This suggests that AtXTH31/XTR8 is involved in the reinforcement of the cell wall of the endosperm during germination. In vivo flavonol staining by diphenyl boric acid aminoethyl ester (DPBA) showed flavonols accumulated in the endosperm of both dormant and non-dormant seeds, suggesting that this event is independent of germination. Notably, DPBA fluorescence was also intense in the embryo, but the fluorescent region was diminished around the radicle and lower half of the hypocotyl during germination. DPBA fluorescence was localized in the vacuoles during germination. Vacuolation was not seen in imbibed dormant seeds, suggesting that vacuolation is associated with germination. A gene for δVPE (vacuolar processing enzyme), a caspase-1-like cysteine proteinase involved in cell death, is expressed specifically in endosperms of 24 h-imbibed seeds. The δvpe mutant showed retardation of vacuolation, but this mutation did not affect the kinetics of germination. This suggests that vacuolation is a consequence, and not a trigger, of germination.

63 citations

Journal ArticleDOI
TL;DR: In this paper, an update of the current understanding of the regulation of seed dormancy and germination by nitrate is presented. But this work is limited to the Arabidopsis thaliana and hedge mustard Sisymbrium officinale.
Abstract: Nitrate promotes seed germination at low concentrations in many plant species, and functions as both a nutrient and a signal. As a nutrient, it is assimilated via nitrite to ammonium, which is then incorporated into amino acids. Nitrate reductase (NR) catalyses the reduction of nitrate to nitrite, the committed step in the assimilation. Seed sensitivity to nitrate is affected by other environmental factors, such as light and after-ripening, and by genotypes. Mode of nitrate action in seed germination has been well documented in Arabidopsis thaliana and the hedge mustard Sisymbrium officinale. In these species nitrate promotes seed germination independent of its assimilation by NR, suggesting that it acts as a signal to stimulate germination. In Arabidopsis, maternally applied nitrate affects the degree of primary dormancy in both wild-type and mutants defective in NR. This indicates that nitrate acts not only during germination, but also during seed development to negatively regulate primary dormancy. Functional genomics studies in Arabidopsis have revealed that nitrate elicits downstream events similar to other germination stimulators, such as after-ripening, light and stratification, suggesting that these distinct environmental signals share the same target(s). In Arabidopsis, the NIN-like protein 8 (NLP8) transcription factor, which acts downstream of nitrate signalling, induces nitrate-dependent gene expression. In particular, a gene encoding the abscisic acid (ABA) catabolic enzyme CYP707A2 is directly regulated by NLP8. This regulation triggers a nitrate-induced ABA decrease that permits seed germination. This review article summarizes an update of our current understanding of the regulation of seed dormancy and germination by nitrate.

52 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review gives an overview of the present understanding of the mechanisms that control seed dormancy at the molecular level, with an emphasis on new insights.
Abstract: Seed dormancy is an important component of plant fitness that causes a delay of germination until the arrival of a favourable growth season. Dormancy is a complex trait that is determined by genetic factors with a substantial environmental influence. Several of the tissues comprising a seed contribute to its final dormancy level. The roles of the plant hormones abscisic acid and gibberellin in the regulation of dormancy and germination have long been recognized. The last decade saw the identification of several additional factors that influence dormancy including dormancy-specific genes, chromatin factors and non-enzymatic processes. This review gives an overview of our present understanding of the mechanisms that control seed dormancy at the molecular level, with an emphasis on new insights. The various regulators that are involved in the induction and release of dormancy, the influence of environmental factors and the conservation of seed dormancy mechanisms between plant species are discussed. Finally, expected future directions in seed dormancy research are considered.

462 citations

Journal ArticleDOI
TL;DR: Current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination are described.
Abstract: Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

269 citations

Journal ArticleDOI
TL;DR: Gene expression profiling in two seed compartments uncovers two transcriptional phases during seed germination that are separated by testa rupture, and indicates a role for mechano-induced signaling at this stage and highlights the fates of the endosperm and radicle: senescence and growth, respectively.
Abstract: Seed germination is a critical stage in the plant life cycle and the first step toward successful plant establishment. Therefore, understanding germination is of important ecological and agronomical relevance. Previous research revealed that different seed compartments (testa, endosperm, and embryo) control germination, but little is known about the underlying spatial and temporal transcriptome changes that lead to seed germination. We analyzed genome-wide expression in germinating Arabidopsis (Arabidopsis thaliana) seeds with both temporal and spatial detail and provide Web-accessible visualizations of the data reported (vseed.nottingham.ac.uk). We show the potential of this high-resolution data set for the construction of meaningful coexpression networks, which provide insight into the genetic control of germination. The data set reveals two transcriptional phases during germination that are separated by testa rupture. The first phase is marked by large transcriptome changes as the seed switches from a dry, quiescent state to a hydrated and active state. At the end of this first transcriptional phase, the number of differentially expressed genes between consecutive time points drops. This increases again at testa rupture, the start of the second transcriptional phase. Transcriptome data indicate a role for mechano-induced signaling at this stage and subsequently highlight the fates of the endosperm and radicle: senescence and growth, respectively. Finally, using a phylotranscriptomic approach, we show that expression levels of evolutionarily young genes drop during the first transcriptional phase and increase during the second phase. Evolutionarily old genes show an opposite pattern, suggesting a more conserved transcriptome prior to the completion of germination.

178 citations

Journal ArticleDOI
TL;DR: The role of the endosperm during seed germination has been investigated in this article. But, it is not known whether the embryo secretes signals to the endo-sperm to induce the degradation of the seed reserve and to promote endo weakening during germination.
Abstract: In angiosperms, a double fertilization event initiates the development of two distinct structures, the embryo and endosperm. The endosperm plays an important role in supporting embryonic growth by supplying nutrients, protecting the embryo and controlling embryo growth by acting as a mechanical barrier during seed development and germination. Its structure and function in the mature dry seed is divergent and specialized among different plant species. A subset of endospermic tissues are composed of living cells even after seed maturation, and play an active role in the regulation of seed germination. Transcriptome analysis has provided new insights into the regulatory functions of the endosperm during seed germination. It is well known that the embryo secretes signals to the endosperm to induce the degradation of the seed reserve and to promote endosperm weakening during germination. Recent advances in seed biology have shown that the endosperm is capable of sensing environmental signals, and can produce and secrete signals to regulate the growth of the embryo. Thus, germination is a systemic response that involves bidirectional interactions between the embryo and endosperm.

167 citations

Journal ArticleDOI
TL;DR: This review summarizes the current state of the understanding of the effects of heavy metal stress on seed germination and seedling development and highlights informational gaps and areas for future research.
Abstract: Heavy metal contamination in soils can influence plants and animals, often leading to toxicosis. Heavy metals can impact various biochemical processes in plants, including enzyme and antioxidant production, protein mobilization and photosynthesis. Hydrolyzing enzymes play a major role in seed germination. Enzymes such as acid phosphatases, proteases and α-amylases are known to facilitate both seed germination and seedling growth via mobilizing nutrients in the endosperm. In the presence of heavy metals, starch is immobilized and nutrient sources become limited. Moreover, a reduction in proteolytic enzyme activity and an increase in protein and amino acid content can be observed under heavy metal stress. Proline, is an amino acid which is essential for cellular metabolism. Numerous studies have shown an increase in proline content under oxidative stress in higher plants. Furthermore, heat shock protein production has also been observed under heavy metal stress. The chloroplast small heat shock proteins (Hsp) reduce photosynthesis damage, rather than repair or help to recover from heavy metal-induced damage. Heavy metals are destructive substances for photosynthesis. They are involved in destabilizing enzymes, oxidizing photosystem II (PS II) and disrupting the electron transport chain and mineral metabolism. Although the physiological effects of Cd have been investigated thoroughly, other metals such as As, Cr, Hg, Cu and Pb have received relatively little attention. Among agricultural plants, rice has been studied extensively; additional studies are needed to characterize toxicities of different heavy metals on other crops. This review summarizes the current state of our understanding of the effects of heavy metal stress on seed germination and seedling development and highlights informational gaps and areas for future research.

147 citations