scispace - formally typeset
Search or ask a question
Author

Liu Chen

Bio: Liu Chen is an academic researcher from Zhejiang University. The author has contributed to research in topics: Instability & Magnetic field. The author has an hindex of 64, co-authored 343 publications receiving 16067 citations. Previous affiliations of Liu Chen include University of California, Berkeley & Princeton University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a theory of long-period (Pc 3 to Pc 5) magnetic pulsations is presented based on the idea of a steady state oscillation of a resonant local field line that is excited by a monochromatic surface wave at the magnetosphere.
Abstract: A theory of long-period (Pc 3 to Pc 5) magnetic pulsations is presented based on the idea of a steady state oscillation of a resonant local field line that is excited by a monochromatic surface wave at the magnetosphere. A coupled wave equation between the shear Alfven wave representing the field line oscillation and the surface wave is derived and solved for the dipole coordinates. The theory gives the frequency, the sense of polarizations, orientation angle of the major axis, and the ellipticity as a function of magnetospheric parameters. It also clarifies some of the contradicting ideas and observations in relation to the sense of polarization and excitation mechanism. At lower latitude it is shown that the orientation angle rather than the sense of rotation is a more critical parameter in finding the direction of wave propagation in the azimuthal coordinate and hence in finding the evidence of wave excitation at the magnetospheric surface by the solar wind.

1,040 citations

Journal ArticleDOI
TL;DR: It is reported that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility, which is a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.
Abstract: Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

848 citations

Journal ArticleDOI
TL;DR: A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed in this paper.
Abstract: A nonlinear gyrokinetic formalism for low‐frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed The nonlinear equations thus derived are valid in the strong‐turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magnetic field geometries The specific case of axisymmetric tokamaks is then considered and a model nonlinear equation is derived for electrostatic drift waves Also, applying the formalism to the shear Alfven wave heating scheme, it is found that nonlinear ion Landau damping of kinetic shear‐Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects In particular, wave energy is found to cascade in wavenumber instead of frequency

763 citations

01 Oct 1981
TL;DR: A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed in this paper.
Abstract: A nonlinear gyrokinetic formalism for low‐frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong‐turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magnetic field geometries. The specific case of axisymmetric tokamaks is then considered and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating scheme, it is found that nonlinear ion Landau damping of kinetic shear‐Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency.

587 citations

Journal ArticleDOI
TL;DR: In this article, an externally applied oscillating magnetic field (at a frequency near 1 MHz for typical tokamak parameters) resonantly mode converts to the kinetic Alfven wave, the wave with the perpendicular wavelength comparable to the ion gyroradius.
Abstract: An externally applied oscillating magnetic field (at a frequency near 1 MHz for typical tokamak parameters) resonantly mode converts to the kinetic Alfven wave, the Alfven wave with the perpendicular wavelength comparable to the ion gyroradius. The kinetic Alfven wave, while it propagates into the higher density side of the plasma after the mode conversion, dissipates due to both linear and nonlinear processes and heats the plasma. If a magnetic field of 50 G effective amplitude is applied, approximately 10 MJ per cubic meter of energy can be deposited in 1 sec into the plasma. The heating rate here is faster than that in the transit time magnetic pumping by a factor of β−1.

498 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations

11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations

Journal ArticleDOI
Y.F. Ye1, Qing Wang1, Jian Lu1, C.T. Liu1, Yong Yang1 
TL;DR: In this paper, a critical review of the recent studies aiming to address the fundamental issues related to phase formation in high-entropy alloys is provided, and novel properties of HEAs are also discussed, such as their excellent specific strength, superior mechanical performance at high temperatures, exceptional ductility and fracture toughness at cryogenic temperatures, superparamagnetism and superconductivity.

1,494 citations