scispace - formally typeset
Search or ask a question
Author

Liu Emily Aijun

Bio: Liu Emily Aijun is an academic researcher from Hoffmann-La Roche. The author has contributed to research in topics: Cancer & Cell signaling. The author has an hindex of 5, co-authored 9 publications receiving 4177 citations.

Papers
More filters
Journal ArticleDOI
06 Feb 2004-Science
TL;DR: In this article, the authors identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts.
Abstract: MDM2 binds the p53 tumor suppressor protein with high affinity and negatively modulates its transcriptional activity and stability. Overexpression of MDM2, found in many human tumors, effectively impairs p53 function. Inhibition of MDM2-p53 interaction can stabilize p53 and may offer a novel strategy for cancer therapy. Here, we identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes. These compounds bind MDM2 in the p53-binding pocket and activate the p53 pathway in cancer cells, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts in nude mice.

4,397 citations

Patent
09 Dec 2002
TL;DR: In this paper, the authors present compounds according to formula I and formula II and pharmaceutically acceptable salts ad esters thereof, having the designations provided herein and which inhibit the interaction of MDM2 protein with a p53-like peptide and have antiproliferative activity.
Abstract: The present invention provides compounds according to formula I and formula II and pharmaceutically acceptable salts ad esters thereof, having the designations provides herein and which inhibit the interaction of MDM2 protein with a p53-like peptide and have antiproliferative activity. Formula (I).

58 citations

Patent
09 Dec 2002
TL;DR: In this paper, the authors provided compounds according to formula I and formula II and pharmaceutically acceptable salts and esters thereof, having the designations provided herein and which inhibit the interaction of MDM2 protein with a p53-like peptide and have antiproliferative activity (I) (II).
Abstract: The present invention provides compounds according to formula I and formula II and pharmaceutically acceptable salts and esters thereof, having the designations provided herein and which inhibit the interaction of MDM2 protein with a p53-like peptide and have antiproliferative activity (I) (II).

15 citations

Patent
08 Mar 2004
TL;DR: In this article, the authors provided compounds having formula (II) or formula (III) and the pharmaceutically acceptable salts thereof; wherein X, n, and R1-R12 are defined herein.
Abstract: The present invention provides compounds having formula (II) or formula (III) and the pharmaceutically acceptable salts thereof; wherein X, n, and R1-R12 are defined herein. The invention also provides a pharmaceutical composition comprising a therapeutically effective amount of a compound represented by formula (II) or (III) and a pharmaceutically acceptable carrier or excipient. The compounds are useful for treating cancer.

9 citations

Patent
08 Jun 2004
TL;DR: In this article, the authors provided compounds according to formula (I ) having the designations provided herein, and pharmaceutically acceptable salts and esters thereof, which inhibit the interaction of MDM2 protein with a p53-like peptide and have antiproliferative activity.
Abstract: The present invention provides compounds according to formula (I ) having the designations provided herein, and pharmaceutically acceptable salts and esters thereof These compounds inhibit the interaction of MDM2 protein with a p53-like peptide and have antiproliferative activity.

6 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 May 2009-Cell
TL;DR: Control of p53's transcriptional activity is crucial for determining which p53 response is activated, a decision that must be understood if the next generation of drugs that selectively activate or inhibit p53 are to be exploited efficiently.

2,775 citations

Journal ArticleDOI
29 Mar 2012-Nature
TL;DR: It was found that mutated cancer genes were associated with cellular response to most currently available cancer drugs, and systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.
Abstract: Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.

2,187 citations

Journal ArticleDOI
08 Feb 2007-Nature
TL;DR: It is indicated that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
Abstract: Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.

2,166 citations

Journal ArticleDOI
TL;DR: It is now becoming clear that p53 can have a much broader role and can contribute to the development, life expectancy and overall fitness of an organism.
Abstract: p53 is best known as a tumour suppressor, although recent studies have challenged the view that this is its only role. Instead, p53 has important functions in organismal development, and might contribute to a number of diseases other than cancer.

2,096 citations