scispace - formally typeset
Search or ask a question
Author

Liwen Jiang

Bio: Liwen Jiang is an academic researcher from The Chinese University of Hong Kong. The author has contributed to research in topics: Arabidopsis & Golgi apparatus. The author has an hindex of 59, co-authored 245 publications receiving 16230 citations. Previous affiliations of Liwen Jiang include Washington State University & Institute of Science and Technology Austria.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
25 Apr 2013-Cell
TL;DR: It is shown that the translation inhibition, but not the mRNA cleavage activity, of Arabidopsis miRNAs requires ALTERED MERISTEM PROGRAM1 (AMP1), and AMP1-independent recruitment of miRNA target transcripts to membrane fractions shows that mi RNAs inhibit the translation of target RNAs on the ER.

444 citations

Journal ArticleDOI
TL;DR: Uptake studies with the styryl dye FM4-64 strongly indicate that PVCs also lie on the endocytic pathway of BY-2 cells, and unequivocally identified MVBs as PVCs in N. tabacum BY- 2 cells.
Abstract: Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs). We have demonstrated recently that vacuolar sorting receptor (VSR) proteins are concentrated on PVCs. In this study, we generated transgenic Nicotiana tabacum (tobacco) BY-2 cell lines expressing two yellow fluorescent protein (YFP)-fusion reporters that mark PVC and Golgi organelles. Both transgenic cell lines exhibited typical punctate YFP signals corresponding to distinct PVC and Golgi organelles because the PVC reporter colocalized with VSR proteins, whereas the Golgi marker colocalized with mannosidase I in confocal immunofluorescence. Brefeldin A induced the YFP-labeled Golgi stacks but not the YFP-marked PVCs to form typical enlarged structures. By contrast, wortmannin caused YFP-labeled PVCs but not YFP-labeled Golgi stacks to vacuolate. VSR antibodies labeled multivesicular bodies (MVBs) on thin sections prepared from high-pressure frozen/freeze substituted samples, and the enlarged PVCs also were indentified as MVBs. MVBs were further purified from BY-2 cells and found to contain VSR proteins via immunogold negative staining. Similar to YFP-labeled Golgi stacks, YFP-labeled PVCs are mobile organelles in BY-2 cells. Thus, we have unequivocally identified MVBs as PVCs in N. tabacum BY-2 cells. Uptake studies with the styryl dye FM4-64 strongly indicate that PVCs also lie on the endocytic pathway of BY-2 cells.

390 citations

Journal ArticleDOI
TL;DR: The cloning and characterization of a new quantitative trait locus (QTL) for the control of rice grain length, weight and yield is reported, suggesting a new mechanism for the regulation of grain size and yield that is driven through a novel phosphatase-mediated process that affects the phosphorylation of Cyclin-T1;3 during cell cycle progression.
Abstract: Increased crop yields are required to support rapid population growth worldwide. Grain weight is a key component of rice yield, but the underlying molecular mechanisms that control it remain elusive. Here, we report the cloning and characterization of a new quantitative trait locus (QTL) for the control of rice grain length, weight and yield. This locus, GL3.1, encodes a protein phosphatase kelch (PPKL) family — Ser/Thr phosphatase. GL3.1 is a member of the large grain WY3 variety, which is associated with weaker dephosphorylation activity than the small grain FAZ1 variety. GL3.1-WY3 influences protein phosphorylation in the spikelet to accelerate cell division, thereby resulting in longer grains and higher yields. Further studies have shown that GL3.1 directly dephosphorylates its substrate, Cyclin-T1;3, which has only been rarely studied in plants. The downregulation of Cyclin-T1;3 in rice resulted in a shorter grain, which indicates a novel function for Cyclin-T in cell cycle regulation. Our findings suggest a new mechanism for the regulation of grain size and yield that is driven through a novel phosphatase-mediated process that affects the phosphorylation of Cyclin-T1;3 during cell cycle progression, and thus provide new insight into the mechanisms underlying crop seed development. We bred a new variety containing the natural GL3.1 allele that demonstrated increased grain yield, which indicates that GL3.1 is a powerful tool for breeding high-yield crops.

323 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Abstract: Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively They are present in biological fluids and are involved in multiple physiological and pathological processes Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles

4,241 citations

Journal ArticleDOI
TL;DR: The transient gene expression system using Arabidopsis mesophyll protoplasts has proven an important and versatile tool for conducting cell-based experiments using molecular, cellular, biochemical, genetic, genomic and proteomic approaches to analyze the functions of diverse signaling pathways and cellular machineries.
Abstract: The transient gene expression system using Arabidopsis mesophyll protoplasts has proven an important and versatile tool for conducting cell-based experiments using molecular, cellular, biochemical, genetic, genomic and proteomic approaches to analyze the functions of diverse signaling pathways and cellular machineries. A well-established protocol that has been extensively tested and applied in numerous experiments is presented here. The method includes protoplast isolation, PEG-calcium transfection of plasmid DNA and protoplast culture. Physiological responses and high-throughput capability enable facile and cost-effective explorations as well as hypothesis-driven tests. The protoplast isolation and DNA transfection procedures take 6-8 h, and the results can be obtained in 2-24 h. The cell system offers reliable guidelines for further comprehensive analysis of complex regulatory mechanisms in whole-plant physiology, immunity, growth and development.

3,883 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: This review provides both an overview of the essential processes that are associated with germination and a description of the possible impediments thereto that may result in dormancy.
Abstract: Seeds are a vital component of the world’s diet. Cereal grains alone, which comprise -90% of all cultivated seeds, contribute up to half of the global per capita energy intake. Not surprisingly then, seed biology is one of the most extensively researched areas in plant physiology. Even in relation to the topics reviewed here, a casual perusal of the Agricola database reveals that well over 5000 publications on seed germination and 700 on seed dormancy have appeared in the last decade. Yet we still cannot answer two fundamental questions: how does the embryo emerge from the seed to complete germination, and how is embryo emergence blocked so that seeds can be maintained in the dormant state? Obviously, with such a large literature on the subject, this review is far from comprehensive. Nevertheless, it provides both an overview of the essential processes that are associated with germination and a description of the possible impediments thereto that may result in dormancy. With the seed, the independence of the next generation of plants begins. The seed, containing the embryo as the new plant in miniature, is structurally and physiologically equipped for its role as a dispersa1 unit and is well provided with food reserves to sustain the growing seedling until it establishes itself as a self-sufficient, autotrophic organism. Because the function of a seed is to establish a new plant, it may seem peculiar that dormancy, an intrinsic block to germination, exists. But it may not be advantageous for a seed to germinate freely, even in seemingly favorable conditions. For example, germination of annuals in the spring allows time for vegetative growth and the subsequent production of offspring, whereas germination in similar conditions in the fall could lead to the demise of the vegetative plant during the winter. Thus, dormancy is an adaptive trait that optimizes the distribution of germination over time in a population of seeds. Seed dormancy is generally an undesirable characteristic in agricultural crops, where rapid germination and growth are required. However, some degree of dormancy is advantageous, at least during seed development. This is particularly true for cereal crops because it prevents germination of grains while still on the ear of the parent plant (preharvest sprouting), a phenomenon that results in major losses to the

2,545 citations