scispace - formally typeset
Search or ask a question
Author

Lixin Wang

Bio: Lixin Wang is an academic researcher from Indiana University – Purdue University Indianapolis. The author has contributed to research in topics: Soil water & Ecosystem. The author has an hindex of 53, co-authored 349 publications receiving 9822 citations. Previous affiliations of Lixin Wang include Hebei University of Science and Technology & Wayne State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new method for climate modeling based on the work of the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA).
Abstract: US Department of Energy; National Science Foundation (NSF) [DEB 1552747]; NSF [DEB 1552976, EF 1241881, EAR 125501, EAR 155489]; NOAA/GFDL-Princeton University Cooperative Institute for Climate Science

634 citations

Journal ArticleDOI
25 May 2016-PLOS ONE
TL;DR: While no yield difference was observed among regions or different soil texture, wheat cultivation in the dryland was more prone to yield loss than in the non-dryland region, and potential causes and possible approaches that may minimize drought impacts are discussed.
Abstract: Drought has been a major cause of agricultural disaster, yet how it affects the vulnerability of maize and wheat production in combination with several co-varying factors (i.e., phenological phases, agro-climatic regions, soil texture) remains unclear. Using a data synthesis approach, this study aims to better characterize the effects of those co-varying factors with drought and to provide critical information on minimizing yield loss. We collected data from peer-reviewed publications between 1980 and 2015 which examined maize and wheat yield responses to drought using field experiments. We performed unweighted analysis using the log response ratio to calculate the bootstrapped confidence limits of yield responses and calculated drought sensitivities with regards to those co-varying factors. Our results showed that yield reduction varied with species, with wheat having lower yield reduction (20.6%) compared to maize (39.3%) at approximately 40% water reduction. Maize was also more sensitive to drought than wheat, particularly during reproductive phase and equally sensitive in the dryland and non-dryland regions. While no yield difference was observed among regions or different soil texture, wheat cultivation in the dryland was more prone to yield loss than in the non-dryland region. Informed by these results, we discuss potential causes and possible approaches that may minimize drought impacts.

512 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide background on the main processes that affect plant and soil N isotope ratios and how they are affected by mycorrhizal fungi, climate, and microbial processing.
Abstract: Background Knowledge of biological and climatic controls in terrestrial nitrogen (N) cycling within and across ecosystems iscentral tounderstandingglobalpatternsof keyecosystemprocesses.Theratiosof 15 N: 14 Ninplants and soils have been used as indirect indices of N cycling parameters, yet our understanding of controls over N isotope ratios in plants and soils is still developing. Scope In this review, we provide background on the mainprocessesthataffectplantandsoilNisotoperatios. In a similar manner to partitioning the roles of state factors and interactive controls in determining ecosystem traits, we review N isotopes patterns in plants and soils across a number of proximal factors that influence ecosystem properties as well as mechanisms that affect these patterns. Lastly, some remaining questions that would improve our understanding of N isotopes in terrestrial ecosystems are highlighted. Conclusion Compared to a decade ago, the global patterns of plant and soil N isotope ratios are more resolved. Additionally, we better understand how plant and soil N isotope ratios are affected by such factors as mycorrhizal fungi, climate, and microbial processing. A comprehensive understanding of the N cycle that ascribes different degrees of isotopic fractionation for each step under different conditions is closer to being realized, but a number of process-level questions still remain.

399 citations

25 May 2016
TL;DR: In this paper, the authors collected data from peer-reviewed publications between 1980 and 2015 which examined maize and wheat yield responses to drought using field experiments and performed unweighted analysis using the log response ratio to calculate the bootstrapped confidence limits of yield responses and calculated drought sensitivities with regards to those covarying factors.
Abstract: Drought has been a major cause of agricultural disaster, yet how it affects the vulnerability of maize and wheat production in combination with several co-varying factors (i.e., phenological phases, agro-climatic regions, soil texture) remains unclear. Using a data synthesis approach, this study aims to better characterize the effects of those co-varying factors with drought and to provide critical information on minimizing yield loss. We collected data from peer-reviewed publications between 1980 and 2015 which examined maize and wheat yield responses to drought using field experiments. We performed unweighted analysis using the log response ratio to calculate the bootstrapped confidence limits of yield responses and calculated drought sensitivities with regards to those co-varying factors. Our results showed that yield reduction varied with species, with wheat having lower yield reduction (20.6%) compared to maize (39.3%) at approximately 40% water reduction. Maize was also more sensitive to drought than wheat, particularly during reproductive phase and equally sensitive in the dryland and non-dryland regions. While no yield difference was observed among regions or different soil texture, wheat cultivation in the dryland was more prone to yield loss than in the non-dryland region. Informed by these results, we discuss potential causes and possible approaches that may minimize drought impacts.

288 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify some current critical issues in the understanding of dryland systems and discuss how arid and semiarid environ- ments are responding to the changes in climate and land use.
Abstract: Drylands cover about 40 % of the terrestrial land surface and account for approximately 40 % of global net primary productivity. Water is fundamental to the biophys- ical processes that sustain ecosystem function and food pro- duction, particularly in drylands where a tight coupling ex- ists between ecosystem productivity, surface energy balance, biogeochemical cycles, and water resource availability. Cur- rently, drylands support at least 2 billion people and comprise both natural and managed ecosystems. In this synthesis, we identify some current critical issues in the understanding of dryland systems and discuss how arid and semiarid environ- ments are responding to the changes in climate and land use. The issues range from societal aspects such as rapid popu- lation growth, the resulting food and water security, and de- velopment issues, to natural aspects such as ecohydrological consequences of bush encroachment and the causes of de- sertification. To improve current understanding and inform upon the needed research efforts to address these critical is- sues, we identify some recent technical advances in terms of monitoring dryland water dynamics, water budget and veg- etation water use, with a focus on the use of stable isotopes and remote sensing. These technological advances provide new tools that assist in addressing critical issues in dryland ecohydrology under climate change.

271 citations


Cited by
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

01 Dec 2010
TL;DR: In this article, the authors suggest a reduction in the global NPP of 0.55 petagrams of carbon, which would not only weaken the terrestrial carbon sink, but would also intensify future competition between food demand and biofuel production.
Abstract: Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

1,780 citations

Journal ArticleDOI
24 Apr 2015-Science
TL;DR: This report reports multiplexed error-robust FISH (MERFISH), a single-molecule imaging method that allows thousands of RNA species to be imaged in single cells by using combinatorial FISH labeling with encoding schemes capable of detecting and/or correcting errors.
Abstract: INTRODUCTION: The copy number and in- tracellular localization of RNA are important regulators of gene expression. Measurement of these properties at the transcriptome scale in single cells will give answers to many ques- tions related to gene expression and regulation. Single-molecule RNA imaging approaches, such as single-molecule fluorescence in situ hybrid- ization(smFISH), are powerful toolsforcount- ing and mappingRNA; however, the number of RNA species that can be simultaneously im- aged in individual cells has been limited. This makes it challenging to perform transcriptomic analysis of single cells in a spatially resolved manner. Here, we report multiplexed error- robust FISH (MERFISH), a single-molecule im- aging method that allows thousands of RNA species to be imaged in single cells by using combinatorial FISH labeling with encoding schemes capable of detecting and/or correct- ing errors. RATIONALE: We labeled each cellular RNA with a set of encoding probes, which contain targeting sequences that bind the RNA and readout sequences that bind fluorescently la- beled readout probes. Each RNA species is encodedwithaparticular combinationofread- out sequences. We used successive rounds of hybridization and imaging, each with a differ- ent readout probe, to identify the readout se- quences bound to each RNA and to decode the RNA. In principle, combinatorial labeling al- lows the number of detectable RNA species to

1,576 citations

Journal ArticleDOI

1,571 citations