scispace - formally typeset
Search or ask a question
Author

Liza Huijse

Bio: Liza Huijse is an academic researcher from Harvard University. The author has contributed to research in topics: Supersymmetry & Fermion. The author has an hindex of 16, co-authored 31 publications receiving 1207 citations. Previous affiliations of Liza Huijse include Stanford University & University of Amsterdam.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied the dependence of the entanglement entropy on the shape of entangling region(s), on the total charge density, on temperature, and on the presence of additional visible Fermi surfaces of gauge-neutral fermions.
Abstract: General scaling arguments, and the behavior of the thermal entropy density, are shown to lead to an infrared metric holographically representing a compressible state with hidden Fermi surfaces. This metric is characterized by a general dynamic critical exponent, z, and a specic hyperscaling violation exponent, . The same metric exhibits a logarithmic violation of the area law of entanglement entropy, as shown recently by Ogawa et al. (arXiv:1111.1023). We study the dependence of the entanglement entropy on the shape of the entangling region(s), on the total charge density, on temperature, and on the presence of additional visible Fermi surfaces of gauge-neutral fermions; for the latter computations, we realize the needed metric in an Einstein-Maxwell-dilaton theory. All our results support the proposal that the holographic theory describes a metallic state with hidden Fermi surfaces of fermions carrying gauge charges of deconned gauge elds.

533 citations

Journal ArticleDOI
TL;DR: In this paper, a unified overview of the zero temperature phases of compressible quantum matter is given, i.e., phases in which the expectation value of a globally conserved U(1) density varies smoothly as a function of parameters.
Abstract: We give a unified overview of the zero temperature phases of compressible quantum matter: i.e., phases in which the expectation value of a globally conserved U(1) density, $\mathcal{Q}$, varies smoothly as a function of parameters. Provided the global U(1) and translational symmetries are unbroken, such phases are expected to have Fermi surfaces, and the Luttinger theorem relates the volumes enclosed by these Fermi surfaces to $⟨\mathcal{Q}⟩$. We survey models of interacting bosons and/or fermions and/or gauge fields which realize such phases. Some phases have Fermi surfaces with the singularities of Landau's Fermi liquid theory, while other Fermi surfaces have non-Fermi liquid singularities. Compressible phases found in models applicable to condensed-matter systems are argued to also be present in models obtained by applying chemical potentials (and other deformations allowed by the residual symmetry at nonzero chemical potential) to the paradigmatic supersymmetric gauge theories underlying gauge-gravity duality: the Aharony-Bergman-Jafferis-Maldacena model in spatial dimension $d=2$, and the $\mathcal{N}=4$ super Yang-Mills theory in $d=3$.

142 citations

Journal ArticleDOI
TL;DR: In this paper, a charged fluid of fermions is coupled to an asymptotically AdS_4 Einstein-Maxwell-dilaton theory to exhibit quantum phase transitions between all three phases.
Abstract: Zero temperature states of matter are holographically described by a spacetime with an asymptotic electric flux. This flux can be sourced either by explicit charged matter fields in the bulk, by an extremal black hole horizon, or by a combination of the two. We refer to these as mesonic, fully fractionalized and partially fractionalized phases of matter, respectively. By coupling a charged fluid of fermions to an asymptotically AdS_4 Einstein-Maxwell-dilaton theory, we exhibit quantum phase transitions between all three of these phases. The onset of fractionalization can be either a first order or continuous phase transition. In the latter case, at the quantum critical point the theory displays an emergent Lifshitz scaling symmetry in the IR.

67 citations

Journal ArticleDOI
TL;DR: A rigorous mathematical result is established which relates quantum ground states to certain tiling configurations on the square lattice which implies that the number of ground states grows exponentially with the linear dimensions of the system.
Abstract: We study a model of strongly correlated electrons on the square lattice which exhibits charge frustration and quantum critical behavior. The potential is tuned to make the interactions supersymmetric. We establish a rigorous mathematical result which relates quantum ground states to certain tiling configurations on the square lattice. For periodic boundary conditions this relation implies that the number of ground states grows exponentially with the linear dimensions of the system. We present substantial analytic and numerical evidence that for open boundary conditions the system has gapless edge modes.

66 citations

Journal ArticleDOI
TL;DR: In this article, a charged fluid of fermions is coupled to an asymptotically AdS4 Einstein-Maxwell-dilaton theory to exhibit quantum phase transitions between all three phases.
Abstract: Zero temperature states of matter at finite charge density are holographically described by a spacetime with an asymptotic electric flux. This flux can be sourced either by explicit charged matter fields in the bulk, by an extremal black hole horizon, or by a combination of the two. We refer to these as mesonic, fully fractionalized and partially fractionalized phases of matter, respectively. By coupling a charged fluid of fermions to an asymptotically AdS4 Einstein–Maxwell-dilaton theory, we exhibit quantum phase transitions between all three of these phases. The onset of fractionalization can be either a first order or continuous phase transition. In the latter case, at the quantum critical point the theory displays an emergent Lifshitz scaling symmetry in the IR.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Baxter has inherited the mantle of Onsager who started the process by solving exactly the two-dimensional Ising model in 1944 as mentioned in this paper, and there has been a growing belief that all the twodimensional lattice statistical models will eventually be solved and that it will be Professor Baxter who solves them.
Abstract: R J Baxter 1982 London: Academic xii + 486 pp price £43.60 Over the past few years there has been a growing belief that all the twodimensional lattice statistical models will eventually be solved and that it will be Professor Baxter who solves them. Baxter has inherited the mantle of Onsager who started the process by solving exactly the two-dimensional Ising model in 1944.

1,658 citations

Book
01 Jan 1957

1,574 citations

Journal ArticleDOI
TL;DR: In this paper, the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems is discussed.
Abstract: We give a general introduction to quantum phase transitions in strongly-correlated electron systems. These transitions which occur at zero temperature when a non-thermal parameter $g$ like pressure, chemical composition or magnetic field is tuned to a critical value are characterized by a dynamic exponent $z$ related to the energy and length scales $\Delta$ and $\xi$. Simple arguments based on an expansion to first order in the effective interaction allow to define an upper-critical dimension $D_{C}=4$ (where $D=d+z$ and $d$ is the spatial dimension) below which mean-field description is no longer valid. We emphasize the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems. Finally we quote some recent inelastic neutron scattering experiments performed on heavy-fermions which lead to unusual scaling law in $\omega /T$ for the dynamical spin susceptibility revealing critical local modes beyond the itinerant magnetism scheme and mention new attempts to describe this local quantum critical point.

1,347 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the dependence of the entanglement entropy on the shape of entangling region(s), on the total charge density, on temperature, and on the presence of additional visible Fermi surfaces of gauge-neutral fermions.
Abstract: General scaling arguments, and the behavior of the thermal entropy density, are shown to lead to an infrared metric holographically representing a compressible state with hidden Fermi surfaces. This metric is characterized by a general dynamic critical exponent, z, and a specic hyperscaling violation exponent, . The same metric exhibits a logarithmic violation of the area law of entanglement entropy, as shown recently by Ogawa et al. (arXiv:1111.1023). We study the dependence of the entanglement entropy on the shape of the entangling region(s), on the total charge density, on temperature, and on the presence of additional visible Fermi surfaces of gauge-neutral fermions; for the latter computations, we realize the needed metric in an Einstein-Maxwell-dilaton theory. All our results support the proposal that the holographic theory describes a metallic state with hidden Fermi surfaces of fermions carrying gauge charges of deconned gauge elds.

533 citations