scispace - formally typeset
Search or ask a question
Author

Long Que

Other affiliations: Morpho, University of Michigan, General Electric  ...read more
Bio: Long Que is an academic researcher from Iowa State University. The author has contributed to research in topics: Nanopore & Carbon nanotube. The author has an hindex of 22, co-authored 124 publications receiving 1794 citations. Previous affiliations of Long Que include Morpho & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe electrothermal microactuators that generate rectilinear displacements and forces by leveraging deformations caused by localized thermal stresses, where an electric current is passed through a V-shaped beam anchored at both ends, and thermal expansion caused by joule heating pushes the apex outward.
Abstract: This paper describes electrothermal microactuators that generate rectilinear displacements and forces by leveraging deformations caused by localized thermal stresses. In one manifestation, an electric current is passed through a V-shaped beam anchored at both ends, and thermal expansion caused by joule heating pushes the apex outward. Analytical and finite element models of device performance are presented along with measured results of devices fabricated using electroplated Ni and p/sup ++/ Si as structural materials. A maskless process extension for incorporating thermal and electrical isolation is described. Nickel devices with 410-/spl mu/m-long, 6-/spl mu/m-wide, and 3-/spl mu/m-thick beams demonstrate 10 /spl mu/m static displacements at 79 mW input power; silicon devices with 800-/spl mu/m-long, 13.9-/spl mu/m-wide, and 3.7-/spl mu/m-thick beams demonstrate 5 /spl mu/m displacement at 180 mW input power. Cascaded silicon devices using three beams of similar dimensions offer comparable displacement with 50-60% savings in power consumption. The peak output forces generated are estimated to be in the range from 1 to 10 mN for the single beam devices and from 0.1 to 1 mN for the cascaded devices. Measured bandwidths are /spl ap/700 Hz for both. The typical drive voltages used are /spl les/12 V, permitting the use of standard electronic interfaces that are generally inadequate for electrostatic actuators.

373 citations

Proceedings ArticleDOI
01 Jan 1999
TL;DR: In this article, the authors describe in-plane microactuators fabricated by standard microsensor materials and processes that can generate forces up to about a milli-newton.
Abstract: This paper describes in-plane microactuators fabricated by standard microsensor materials and processes that can generate forces up to about a milli-newton. They operate by leveraging the deformations produced by localized thermal stresses. Analytical and finite element models of device performance are presented along with measured results of fabricated devices using electroplated Ni, LPCVD polysilicon, and p/sup ++/ Si as structural materials. A maskless process extension for incorporating thermal and electrical isolation is outlined. Test results show that static displacements of /spl ap/10 /spl mu/m can be achieved with power dissipation of /spl ap/100 mW, and output forces >300 /spl mu/N can be achieved with input power <250 mW. It is also shown that cascaded devices offer a 4/spl times/ improvement in displacement. The displacements are rectilinear, and the output forces generated are 10/spl times/-100/spl times/ higher than those available from other comparable options. This performance is achieved at much lower drive voltages than necessary for electrostatic actuation, indicating that bent-beam thermal actuators are suitable for integration in a variety of microsystems.

153 citations

Journal ArticleDOI
TL;DR: In this paper, a laterally deflecting micromachined device is described to electronically monitor the thermal expansion coefficient, tensile and compressive residual strain and Young's modulus of microstructural materials, as well as the temperature dependence of these properties.
Abstract: This paper describes a laterally deflecting micromachined device that offers high sensitivity and wide dynamic range to electronically monitor the thermal expansion coefficient, tensile and compressive residual strain and Young's modulus of microstructural materials, as well as the temperature dependence of these properties. The device uses sidewall capacitance between interdigitated tines to sense displacement caused by the release of residual stress in a bent-beam suspension. Electrostatic force is used to obtain load-deflection profiles. The suspensions and tines are arranged such that output is a differential readout, immune to common mode parasitic capacitance. Analytical and numerical modeling results are presented and the device concept is verified by three different fabrication approaches using polysilicon and nickel as structural materials. Measured values of residual strain, thermal expansion and Young's modulus are very consistent with measurements taken by other approaches and those reported previously. For example, the residual strain in certain electrodeposited Ni structures was tracked from 68.5 microstrain at 23/spl deg/C to -420 microstrain at 130/spl deg/C, providing an expansion coefficient of 8.2 ppm/K; the best fit Young's modulus provided by the device was 115 GPa.

61 citations

Journal ArticleDOI
TL;DR: Given its nature of low cost, simple-to-operation and batch fabrication capability, the arrayed nanostructured FPI microchip-based platform could provide an ideal technical tool for point-of-care diagnostics application and anticancer drug screen and discovery.

49 citations

Journal ArticleDOI
TL;DR: An aptamer-based nanopore thin film sensor for detecting theophylline in the buffer solution and complex fluids including plant extracts and serum samples and has good specificity, selectivity, and reasonable reusability with a significantly improved dynamic detection range is reported.

47 citations


Cited by
More filters
01 Jan 1999
TL;DR: Damascene copper electroplating for on-chip interconnections, a process that was conceived and developed in the early 1990s, makes it possible to fill submicron trenches and vias with copper without creating a void or a seam and has thus proven superior to other technologies of copper deposition as discussed by the authors.
Abstract: Damascene copper electroplating for on-chip interconnections, a process that we conceived and developed in the early 1990s, makes it possible to fill submicron trenches and vias with copper without creating a void or a seam and has thus proven superior to other technologies of copper deposition. We discuss here the relationship of additives in the plating bath to superfilling, the phenomenon that results in superconformal coverage, and we present a numerical model which accounts for the experimentally observed profile evolution of the plated metal.

1,006 citations

BookDOI
27 Sep 2001
TL;DR: In this paper, the authors present a detailed overview of the history of the field of flow simulation for MEMS and discuss the current state-of-the-art in this field.
Abstract: Part I: Background and Fundamentals Introduction, Mohamed Gad-el-Hak, University of Notre Dame Scaling of Micromechanical Devices, William Trimmer, Standard MEMS, Inc., and Robert H. Stroud, Aerospace Corporation Mechanical Properties of MEMS Materials, William N. Sharpe, Jr., Johns Hopkins University Flow Physics, Mohamed Gad-el-Hak, University of Notre Dame Integrated Simulation for MEMS: Coupling Flow-Structure-Thermal-Electrical Domains, Robert M. Kirby and George Em Karniadakis, Brown University, and Oleg Mikulchenko and Kartikeya Mayaram, Oregon State University Liquid Flows in Microchannels, Kendra V. Sharp and Ronald J. Adrian, University of Illinois at Urbana-Champaign, Juan G. Santiago and Joshua I. Molho, Stanford University Burnett Simulations of Flows in Microdevices, Ramesh K. Agarwal and Keon-Young Yun, Wichita State University Molecular-Based Microfluidic Simulation Models, Ali Beskok, Texas A&M University Lubrication in MEMS, Kenneth S. Breuer, Brown University Physics of Thin Liquid Films, Alexander Oron, Technion, Israel Bubble/Drop Transport in Microchannels, Hsueh-Chia Chang, University of Notre Dame Fundamentals of Control Theory, Bill Goodwine, University of Notre Dame Model-Based Flow Control for Distributed Architectures, Thomas R. Bewley, University of California, San Diego Soft Computing in Control, Mihir Sen and Bill Goodwine, University of Notre Dame Part II: Design and Fabrication Materials for Microelectromechanical Systems Christian A. Zorman and Mehran Mehregany, Case Western Reserve University MEMS Fabrication, Marc J. Madou, Nanogen, Inc. LIGA and Other Replication Techniques, Marc J. Madou, Nanogen, Inc. X-Ray-Based Fabrication, Todd Christenson, Sandia National Laboratories Electrochemical Fabrication (EFAB), Adam L. Cohen, MEMGen Corporation Fabrication and Characterization of Single-Crystal Silicon Carbide MEMS, Robert S. Okojie, NASA Glenn Research Center Deep Reactive Ion Etching for Bulk Micromachining of Silicon Carbide, Glenn M. Beheim, NASA Glenn Research Center Microfabricated Chemical Sensors for Aerospace Applications, Gary W. Hunter, NASA Glenn Research Center, Chung-Chiun Liu, Case Western Reserve University, and Darby B. Makel, Makel Engineering, Inc. Packaging of Harsh-Environment MEMS Devices, Liang-Yu Chen and Jih-Fen Lei, NASA Glenn Research Center Part III: Applications of MEMS Inertial Sensors, Paul L. Bergstrom, Michigan Technological University, and Gary G. Li, OMM, Inc. Micromachined Pressure Sensors, Jae-Sung Park, Chester Wilson, and Yogesh B. Gianchandani, University of Wisconsin-Madison Sensors and Actuators for Turbulent Flows. Lennart Loefdahl, Chalmers University of Technology, and Mohamed Gad-el-Hak, University of Notre Dame Surface-Micromachined Mechanisms, Andrew D. Oliver and David W. Plummer, Sandia National Laboratories Microrobotics Thorbjoern Ebefors and Goeran Stemme, Royal Institute of Technology, Sweden Microscale Vacuum Pumps, E. Phillip Muntz, University of Southern California, and Stephen E. Vargo, SiWave, Inc. Microdroplet Generators. Fan-Gang Tseng, National Tsing Hua University, Taiwan Micro Heat Pipes and Micro Heat Spreaders, G. P. "Bud" Peterson, Rensselaer Polytechnic Institute Microchannel Heat Sinks, Yitshak Zohar, Hong Kong University of Science and Technology Flow Control, Mohamed Gad-el-Hak, University of Notre Dame) Part IV: The Future Reactive Control for Skin-Friction Reduction, Haecheon Choi, Seoul National University Towards MEMS Autonomous Control of Free-Shear Flows, Ahmed Naguib, Michigan State University Fabrication Technologies for Nanoelectromechanical Systems, Gary H. Bernstein, Holly V. Goodson, and Gregory L. Snider, University of Notre Dame Index

951 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the book.http://www.reviewreviews.com/reviews/book-reviews-of-the-book
Abstract: Review

941 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids, and showed that proper hybridization may make the hybrid nanoparticles very promising for heat transfer enhancement, however, lot of research works are still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.
Abstract: Researches on the nanofluids have been increased very rapidly over the past decade. In spite of some inconsistency in the reported results and insufficient understanding of the mechanism of the heat transfer in nanofluids, it has been emerged as a promising heat transfer fluid. In the continuation of nanofluids research, the researchers have also tried to use hybrid nanofluid recently, which is engineered by suspending dissimilar nanoparticles either in mixture or composite form. The idea of using hybrid nanofluids is to further improvement of heat transfer and pressure drop characteristics by trade-off between advantages and disadvantages of individual suspension, attributed to good aspect ratio, better thermal network and synergistic effect of nanomaterials. This review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids. Review showed that proper hybridization may make the hybrid nanofluids very promising for heat transfer enhancement, however, lot of research works is still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.

846 citations

Journal ArticleDOI
TL;DR: In this paper, the pyroelectric effect and potential thermal and electric field cycles for energy harvesting are explored, as well as pyro-electric architectures and systems that can be employed to improve device performance.
Abstract: This review covers energy harvesting technologies associated with pyroelectric materials and systems. Such materials have the potential to generate electrical power from thermal fluctuations and is a less well explored form of thermal energy harvesting than thermoelectric systems. The pyroelectric effect and potential thermal and electric field cycles for energy harvesting are explored. Materials of interest are discussed and pyroelectric architectures and systems that can be employed to improve device performance, such as frequency and power level, are described. In addition to the solid materials employed, the appropriate pyroelectric harvesting circuits to condition and store the electrical power are discussed.

589 citations