scispace - formally typeset
Search or ask a question
Author

Looli Alawam Nemer

Bio: Looli Alawam Nemer is an academic researcher from African Institute for Mathematical Sciences. The author has contributed to research in topics: Population & Vaccination. The author has an hindex of 2, co-authored 3 publications receiving 10 citations.

Papers
More filters
Journal ArticleDOI
22 Apr 2021-PLOS ONE
TL;DR: In this article, the simulation model underlying the pandemic preparedness tool CovidSim 1.1 (http://covidsim.eu/) is extended to investigate the effect of regularly testing of employees to protect immobile resident risk groups in closed facilities.
Abstract: BACKGROUND: Different levels of control measures were introduced to contain the global COVID-19 pandemic, many of which have been controversial, particularly the comprehensive use of diagnostic tests. Regular testing of high-risk individuals (pre-existing conditions, older than 60 years of age) has been suggested by public health authorities. The WHO suggested the use of routine screening of residents, employees, and visitors of long-term care facilities (LTCF) to protect the resident risk group. Similar suggestions have been made by the WHO for other closed facilities including incarceration facilities (e.g., prisons or jails), wherein parts of the U.S., accelerated release of approved inmates is taken as a measure to mitigate COVID-19. METHODS AND FINDINGS: Here, the simulation model underlying the pandemic preparedness tool CovidSim 1.1 (http://covidsim.eu/) is extended to investigate the effect of regularly testing of employees to protect immobile resident risk groups in closed facilities. The reduction in the number of infections and deaths within the risk group is investigated. Our simulations are adjusted to reflect the situation of LTCFs in Germany, and incarceration facilities in the U.S. COVID-19 spreads in closed facilities due to contact with infected employees even under strict confinement of visitors in a pandemic scenario without targeted protective measures. Testing is only effective in conjunction with targeted contact reduction between the closed facility and the outside world-and will be most inefficient under strategies aiming for herd immunity. The frequency of testing, the quality of tests, and the waiting time for obtaining test results have noticeable effects. The exact reduction in the number of cases depends on disease prevalence in the population and the levels of contact reductions. Testing every 5 days with a good quality test and a processing time of 24 hours can lead up to a 40% reduction in the number of infections. However, the effects of testing vary substantially among types of closed facilities and can even be counterproductive in U.S. IFs. CONCLUSIONS: The introduction of COVID-19 in closed facilities is unavoidable without a thorough screening of persons that can introduce the disease into the facility. Regular testing of employees in closed facilities can contribute to reducing the number of infections there, but is only meaningful as an accompanying measure, whose economic benefit needs to be assessed carefully.

16 citations

Journal ArticleDOI
22 Apr 2021-PLOS ONE
TL;DR: In this article, the authors introduce a complex extension of the model underlying the pandemic preparedness tool CovidSim 1.1 (http://covidsim.eu/) to optimize vaccination strategies with regard to the onset of campaigns, vaccination coverage, vaccination schedules, vaccination rates, and efficiency of vaccines.
Abstract: BACKGROUND: COVID-19 vaccines are approved, vaccination campaigns are launched, and worldwide return to normality seems within close reach. Nevertheless, concerns about the safety of COVID-19 vaccines arose, due to their fast emergency approval. In fact, the problem of antibody-dependent enhancement was raised in the context of COVID-19 vaccines. METHODS AND FINDINGS: We introduce a complex extension of the model underlying the pandemic preparedness tool CovidSim 1.1 (http://covidsim.eu/) to optimize vaccination strategies with regard to the onset of campaigns, vaccination coverage, vaccination schedules, vaccination rates, and efficiency of vaccines. Vaccines are not assumed to immunize perfectly. Some individuals fail to immunize, some reach only partial immunity, and-importantly-some develop antibody-dependent enhancement, which increases the likelihood of developing symptomatic and severe episodes (associated with higher case fatality) upon infection. Only a fraction of the population will be vaccinated, reflecting vaccination hesitancy or contraindications. The model is intended to facilitate decision making by exploring ranges of parameters rather than to be fitted by empirical data. We parameterized the model to reflect the situation in Germany and predict increasing incidence (and prevalence) in early 2021 followed by a decline by summer. Assuming contact reductions (curfews, social distancing, etc.) to be lifted in summer, disease incidence will peak again. Fast vaccine deployment contributes to reduce disease incidence in the first quarter of 2021, and delay the epidemic outbreak after the summer season. Higher vaccination coverage results in a delayed and reduced epidemic peak. A coverage of 75%-80% is necessary to prevent an epidemic peak without further drastic contact reductions. CONCLUSIONS: With the vaccine becoming available, compliance with contact reductions is likely to fade. To prevent further economic damage from COVID-19, high levels of immunization need to be reached before next year's flu season, and vaccination strategies and disease management need to be flexibly adjusted. The predictive model can serve as a refined decision support tool for COVID-19 management.

10 citations

Posted ContentDOI
04 Jan 2021-bioRxiv
TL;DR: In this article, a complex extension of the model underlying the pandemic preparedness tool CovidSim 1.1 (http://covidsim.eu/) is introduced to optimize vaccination strategies with regard to the onset of campaigns, vaccination coverage, vaccination schedules, vaccination rates, and efficiency of vaccines.
Abstract: Background COVID-19 vaccines are approved, vaccination campaigns are launched, and worldwide return to normality seems within close reach. Nevertheless, concerns about the safety of COVID-19 vaccines arose, due to their fast emergency approval. In fact, the problem of antibody-dependent enhancement was raised in the context of COVID-19 vaccines. Methods and findings We introduce a complex extension of the model underlying the pandemic preparedness tool CovidSim 1.1 (http://covidsim.eu/) to optimize vaccination strategies with regard to the onset of campaigns, vaccination coverage, vaccination schedules, vaccination rates, and efficiency of vaccines. Vaccines are not assumed to immunize perfectly. Some individuals fail to immunize, some reach only partial immunity, and – importantly – some develop antibody-dependent enhancement, which increases the likelihood of developing symptomatic and severe episodes (associated with higher case fatality) upon infection. Only a fraction of the population will be vaccinated, reflecting vaccination hesitancy or contraindications. We parameterized the model to reflect the situation in Germany and predict increasing incidence (and prevalence) in early 2021 followed by a decline by summer. Assuming contact reductions (curfews, social distancing, etc.) to be lifted in summer, disease incidence will peak again. Fast vaccine deployment contributes to reduce disease incidence in the first quarter of 2021, and delay the epidemic outbreak after the summer season. Higher vaccination coverage results in a delayed and reduced epidemic peak. A coverage of 75% 80% is necessary to prevent an epidemic peak without further drastic contact reductions. Conclusions With the vaccine becoming available, compliance with contact reductions is likely to fade. To prevent further economic damage from COVID-19, high levels of immunization need to be reached before next year’s flu season, and vaccination strategies and disease management need to be flexibly adjusted. The predictive model can serve as a refined decision support tool for COVID-19 management.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the effects of non-pharmacological measures implemented in long-term care facilities to prevent or reduce the transmission of SARS-CoV-2 infection among residents, staff, and visitors.
Abstract: Background Starting in late 2019, COVID-19, caused by the novel coronavirus SARS-CoV-2, spread around the world. Long-term care facilities are at particularly high risk of outbreaks, and the burden of morbidity and mortality is very high among residents living in these facilities. Objectives To assess the effects of non-pharmacological measures implemented in long-term care facilities to prevent or reduce the transmission of SARS-CoV-2 infection among residents, staff, and visitors. Search methods On 22 January 2021, we searched the Cochrane COVID-19 Study Register, WHO COVID-19 Global literature on coronavirus disease, Web of Science, and CINAHL. We also conducted backward citation searches of existing reviews. Selection criteria We considered experimental, quasi-experimental, observational and modelling studies that assessed the effects of the measures implemented in long-term care facilities to protect residents and staff against SARS-CoV-2 infection. Primary outcomes were infections, hospitalisations and deaths due to COVID-19, contaminations of and outbreaks in long-term care facilities, and adverse health effects. Data collection and analysis Two review authors independently screened titles, abstracts and full texts. One review author performed data extractions, risk of bias assessments and quality appraisals, and at least one other author checked their accuracy. Risk of bias and quality assessments were conducted using the ROBINS-I tool for cohort and interrupted-time-series studies, the Joanna Briggs Institute (JBI) checklist for case-control studies, and a bespoke tool for modelling studies. We synthesised findings narratively, focusing on the direction of effect. One review author assessed certainty of evidence with GRADE, with the author team critically discussing the ratings. Main results We included 11 observational studies and 11 modelling studies in the analysis. All studies were conducted in high-income countries. Most studies compared outcomes in long-term care facilities that implemented the measures with predicted or observed control scenarios without the measure (but often with baseline infection control measures also in place). Several modelling studies assessed additional comparator scenarios, such as comparing higher with lower rates of testing. There were serious concerns regarding risk of bias in almost all observational studies and major or critical concerns regarding the quality of many modelling studies. Most observational studies did not adequately control for confounding. Many modelling studies used inappropriate assumptions about the structure and input parameters of the models, and failed to adequately assess uncertainty. Overall, we identified five intervention domains, each including a number of specific measures. Entry regulation measures (4 observational studies; 4 modelling studies) Self-confinement of staff with residents may reduce the number of infections, probability of facility contamination, and number of deaths. Quarantine for new admissions may reduce the number of infections. Testing of new admissions and intensified testing of residents and of staff after holidays may reduce the number of infections, but the evidence is very uncertain. The evidence is very uncertain regarding whether restricting admissions of new residents reduces the number of infections, but the measure may reduce the probability of facility contamination. Visiting restrictions may reduce the number of infections and deaths. Furthermore, it may increase the probability of facility contamination, but the evidence is very uncertain. It is very uncertain how visiting restrictions may adversely affect the mental health of residents. Contact-regulating and transmission-reducing measures (6 observational studies; 2 modelling studies) Barrier nursing may increase the number of infections and the probability of outbreaks, but the evidence is very uncertain. Multicomponent cleaning and environmental hygiene measures may reduce the number of infections, but the evidence is very uncertain. It is unclear how contact reduction measures affect the probability of outbreaks. These measures may reduce the number of infections, but the evidence is very uncertain. Personal hygiene measures may reduce the probability of outbreaks, but the evidence is very uncertain. Mask and personal protective equipment usage may reduce the number of infections, the probability of outbreaks, and the number of deaths, but the evidence is very uncertain. Cohorting residents and staff may reduce the number of infections, although evidence is very uncertain. Multicomponent contact -regulating and transmission -reducing measures may reduce the probability of outbreaks, but the evidence is very uncertain. Surveillance measures (2 observational studies; 6 modelling studies) Routine testing of residents and staff independent of symptoms may reduce the number of infections. It may reduce the probability of outbreaks, but the evidence is very uncertain. Evidence from one observational study suggests that the measure may reduce, while the evidence from one modelling study suggests that it probably reduces hospitalisations. The measure may reduce the number of deaths among residents, but the evidence on deaths among staff is unclear. Symptom-based surveillance testing may reduce the number of infections and the probability of outbreaks, but the evidence is very uncertain. Outbreak control measures (4 observational studies; 3 modelling studies) Separating infected and non-infected residents or staff caring for them may reduce the number of infections. The measure may reduce the probability of outbreaks and may reduce the number of deaths, but the evidence for the latter is very uncertain. Isolation of cases may reduce the number of infections and the probability of outbreaks, but the evidence is very uncertain. Multicomponent measures (2 observational studies; 1 modelling study) A combination of multiple infection-control measures, including various combinations of the above categories, may reduce the number of infections and may reduce the number of deaths, but the evidence for the latter is very uncertain. Authors' conclusions This review provides a comprehensive framework and synthesis of a range of non-pharmacological measures implemented in long-term care facilities. These may prevent SARS-CoV-2 infections and their consequences. However, the certainty of evidence is predominantly low to very low, due to the limited availability of evidence and the design and quality of available studies. Therefore, true effects may be substantially different from those reported here. Overall, more studies producing stronger evidence on the effects of non-pharmacological measures are needed, especially in low- and middle-income countries and on possible unintended consequences of these measures. Future research should explore the reasons behind the paucity of evidence to guide pandemic research priority setting in the future.

31 citations

Journal ArticleDOI
22 Apr 2021-PLOS ONE
TL;DR: In this article, the simulation model underlying the pandemic preparedness tool CovidSim 1.1 (http://covidsim.eu/) is extended to investigate the effect of regularly testing of employees to protect immobile resident risk groups in closed facilities.
Abstract: BACKGROUND: Different levels of control measures were introduced to contain the global COVID-19 pandemic, many of which have been controversial, particularly the comprehensive use of diagnostic tests. Regular testing of high-risk individuals (pre-existing conditions, older than 60 years of age) has been suggested by public health authorities. The WHO suggested the use of routine screening of residents, employees, and visitors of long-term care facilities (LTCF) to protect the resident risk group. Similar suggestions have been made by the WHO for other closed facilities including incarceration facilities (e.g., prisons or jails), wherein parts of the U.S., accelerated release of approved inmates is taken as a measure to mitigate COVID-19. METHODS AND FINDINGS: Here, the simulation model underlying the pandemic preparedness tool CovidSim 1.1 (http://covidsim.eu/) is extended to investigate the effect of regularly testing of employees to protect immobile resident risk groups in closed facilities. The reduction in the number of infections and deaths within the risk group is investigated. Our simulations are adjusted to reflect the situation of LTCFs in Germany, and incarceration facilities in the U.S. COVID-19 spreads in closed facilities due to contact with infected employees even under strict confinement of visitors in a pandemic scenario without targeted protective measures. Testing is only effective in conjunction with targeted contact reduction between the closed facility and the outside world-and will be most inefficient under strategies aiming for herd immunity. The frequency of testing, the quality of tests, and the waiting time for obtaining test results have noticeable effects. The exact reduction in the number of cases depends on disease prevalence in the population and the levels of contact reductions. Testing every 5 days with a good quality test and a processing time of 24 hours can lead up to a 40% reduction in the number of infections. However, the effects of testing vary substantially among types of closed facilities and can even be counterproductive in U.S. IFs. CONCLUSIONS: The introduction of COVID-19 in closed facilities is unavoidable without a thorough screening of persons that can introduce the disease into the facility. Regular testing of employees in closed facilities can contribute to reducing the number of infections there, but is only meaningful as an accompanying measure, whose economic benefit needs to be assessed carefully.

16 citations

Posted ContentDOI
14 Oct 2020-medRxiv
TL;DR: These measures provide an economically meaningful way to protect vulnerable risk groups characterized by an elevated risk of severe infections in closed facilities, in which contact-reducing measures are difficult to implement due to imminent unavoidable close human-to-human contacts.
Abstract: Background Draconic control measures were introduced to contain the global COVID-19 pandemic, many of which have been controversial, particularly the comprehensive use of diagnostic tests. Regular testing of high-risk individuals (pre-existing conditions, older than 60 years of age) has been suggested by public health authorities. The WHO suggested the use of routine screening of residents, employees, and visitors of long-term care facilities (LTCF) to protect the resident risk group. Similar suggestions have been made by the WHO for other closed facilities including incarceration facilities (e.g., prisons or jails), where in parts of the US, accelerated release of approved inmates is taken as a measure to mitigate COVID-19. Methods and findings Here, the simulation model underlying the pandemic preparedness tool CovidSim 1.1 (http://covidsim.eu/) is extended to investigate the effect of regularly testing of employees in order to protect immobile resident risk groups in closed facilities. The reduction in the number of infections and deaths within the risk group are investigated as well as the potential economic gain resulting from savings in COVID-19 related treatment costs in comparison to costs resulting from the testing interventions. Our simulations are adjusted to reflect the situation of LTCFs in the Federal Republic of Germany. The probability is nearly one that COVID-19 spreads into closed facilities due to contact with infected employees even under strict confinement of visitors in a pandemic scenario without targeted protective measures. Regular screening of all employees by PCR tests provides a significant reduction of COVID-19 cases and related deaths in LTCFs. While the frequency of testing (testing rate) and the quality of tests have noticeable effects, the waiting time for obtaining test results (ranging from 12 up to 96 hours) hardly impacts the outcome. The results suggest that testing every two weeks with low-quality tests and a processing time of up to 96 hours yields a strong reduction in the number of cases. Rough estimates suggest a significant economic gain. Conclusions The introduction of COVID-19 in closed facilities is unavoidable without thorough screening of persons that can introduce the disease into the facility. These measures provide an economically meaningful way to protect vulnerable risk groups characterized by an elevated risk of severe infections in closed facilities, in which contact-reducing measures are difficult to implement due to imminent unavoidable close human-to-human contacts.

13 citations

Journal ArticleDOI
TL;DR: In this paper , the authors explored reasons volunteered for COVID-19 vaccine hesitancy from a sample of 1,173 Colombians, Ecuadorians, and Venezuelans, and found that most people who are vaccine hesitant offered one reason or fewer.
Abstract: ABSTRACT Although vaccines have been developed to prevent COVID-19, vaccine hesitancy is a significant barrier for vaccination programs. Most research on COVID-19 vaccine hesitancy has blamed misinformation and misstated concerns about effectiveness, safety, and side effects of these vaccines. The preponderance of these studies has been performed in the Global North. Although Latin American has been substantially and negatively impacted by COVID-19, few studies have examined COVID-19 vaccine hesitancy there. We explored reasons volunteered for COVID-19 vaccine hesitancy from a sample of 1,173 Colombians, Ecuadorians, and Venezuelans. Overall, COVID-19 vaccine hesitancy in these three countries is higher than desirable, but most people who are COVID-19 vaccine hesitant offered one reason or fewer. The reasons offered are diverse, including myths and exaggerations, but also individual-level contraindications for vaccination and structural barriers. Because of the diversity of reasons, single-issue mass campaigns are unlikely to bring about large shifts in COVID-19 vaccine hesitancy in Colombia, Ecuador, and Venezuela. Our data suggest that interpersonal communication, particularly in Ecuador, and addressing structural concerns, particularly in Venezuela, are likely to have the greatest impact on vaccine uptake.

11 citations

Journal ArticleDOI
TL;DR: The design, use, and practicality of LFA for diagnosing SARS-CoV-2 infection is introduced and the current knowledge and situation about interference in rapid COVID-19 tests due to variant strains as well as vaccination are discussed.
Abstract: Rapid testing, generally refers to the paper-based diagnostic platform known as “lateral flow assay” (LFA), has emerged as a critical asset to the containment of coronavirus disease 2019 (COVID-19) around the world. LFA technology stands out amongst peer platforms due to its cost-effective design, user-friendly interface, and low sample-to-readout times. This article aims to introduce its design, use, and practicality for the purpose of diagnosing SARS-CoV-2 infection. A connection is made from the normal COVID-19 immune response to the design and efficacy of rapid testing. Interference in test results is a challenge shared by most diagnostic platforms and can be rooted in various underlying issues. The current knowledge and situation about interference in rapid COVID-19 tests due to variant strains as well as vaccination are discussed. The cost and societal impact are reviewed as they play important roles in determining how to properly implement public testing practices. Perspectives on improving the performance, especially detection sensitivity, of LFA for COVID-19 are provided.

11 citations