scispace - formally typeset
Search or ask a question
Author

Lorena Fernández-Martínez

Bio: Lorena Fernández-Martínez is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Disease gene identification & Anophthalmia. The author has an hindex of 3, co-authored 3 publications receiving 377 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: STRA6 mutations define a pleiotropic malformation syndrome representing the first human phenotype associated with mutations in a gene from the "STRA" group.
Abstract: We observed two unrelated consanguineous families with malformation syndromes sharing anophthalmia and distinct eyebrows as common signs, but differing for alveolar capillary dysplasia or complex congenital heart defect in one and diaphragmatic hernia in the other family. Homozygosity mapping revealed linkage to a common locus on chromosome 15, and pathogenic homozygous mutations were identified in STRA6, a member of a large group of "stimulated by retinoic acid" genes encoding novel transmembrane proteins, transcription factors, and secreted signaling molecules or proteins of largely unknown function. Subsequently, homozygous STRA6 mutations were also demonstrated in 3 of 13 patients chosen on the basis of significant phenotypic overlap to the original cases. While a homozygous deletion generating a premature stop codon (p.G50AfsX22) led to absence of the immunoreactive protein in patient's fibroblast culture, structural analysis of three missense mutations (P90L, P293L, and T321P) suggested significant effects on the geometry of the loops connecting the transmembrane helices of STRA6. Two further variations in the C-terminus (T644M and R655C) alter specific functional sites, an SH2-binding motif and a phosphorylation site, respectively. STRA6 mutations thus define a pleiotropic malformation syndrome representing the first human phenotype associated with mutations in a gene from the "STRA" group.

327 citations

Journal ArticleDOI
TL;DR: Heterozygous functionally characterized CYP1B1 mutations with absent or reduced relative enzymatic activity can be considered a risk factor for POAG.
Abstract: Purpose.: Although primary congenital glaucoma (PCG)–associated CYP1B1 mutations in the heterozygous state have been evaluated for association with primary open-angle glaucoma (POAG) in several small studies, their contribution to the occurrence of POAG is still controversial. The present study was conducted to determine whether heterozygous functionally characterized CYP1B1 mutations are associated with the disease in a large cohort of German patients with POAG. Methods.: The frequency of CYP1B1 variants on direct sequencing of the entire coding region was compared in 399 unrelated German patients with POAG (270, POAG; 47, JOAG; and 82, NTG) and 376 control subjects without any signs of glaucoma on ophthalmic examination. In vitro functional assays were performed and relative enzymatic activity of the CYP1B1 variants embedded in their respective background haplotypes and not previously unambiguously classified were determined, to assess their possible causative role. Results.: Apart from known polymorphic variants, 11 amino acid substitutions in CYP1B1 reported before, both in PCG and POAG cases, were identified. After in vitro functional assay, variants P52L and R368H showed marked reduction of activity, confirming their role as loss-of-function mutations similar to previously determined variants G61E, N203S, and G329V. In contrast, variants G168D, A443G, and A465V showed no relevant effects and were thus classified as polymorphisms. Overall, seven functionally impaired variants were present in 13 (3.6%) patients and in 1 (0.2%) control subject (P = 0.002, OR = 5.4). Reanalysis of previous studies reporting CYP1B1 mutations in patients with POAG based on updated functional validation showed a significant excess of carriers among patients compared to controls (OR = 3.85; P = 2.3 × 10−7). Conclusions.: Heterozygous CYP1B1 mutations with absent or reduced relative enzymatic activity can be considered a risk factor for POAG.

54 citations

Journal ArticleDOI
TL;DR: The data support that heterozygous non-synonymous variants ofRPGRIP1 may cause or increase the susceptibility to various forms of glaucoma and that among other factors, physical impairment of the interaction of RPGRIP1with different proteins may contribute to the pathogenesis of forms ofglaucomA.
Abstract: Glaucoma is a genetically heterogeneous disorder and is the second cause of blindness worldwide owing to the progressive degeneration of retinal ganglion neurons. Very few genes causing glaucoma were identified to this date. In this study, we screened 10 candidate genes of glaucoma between the D14S261 and D14S121 markers of chromosome 14q11, a critical region previously linked to primary open-angle glaucoma (POAG). Mutation analyses of two large cohorts of patients with POAG, normal tension glaucoma (NTG) and juvenile open-angle glaucoma (JOAG), and control subjects, found only association of non-synonymous heterozygous variants of the retinitis pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1) with POAG, NTG and JOAG. The 20 non-synonymous variants identified in RPGRIP1 were all distinct from variants causing photoreceptor dystrophies and were found throughout all but one domain (RPGR-interacting domain) of RPGRIP1. Among them, 14 missense variants clustered within or around the C2 domains of RPGRIP1. Yeast two-hybrid analyses of a subset of the missense mutations within the C2 domains of RPGRIP1 shows that five of them (p.R598Q, p.A635G, p.T806I, p.A837G and p.I838V) decrease the association of the C2 domains with nephrocystin-4 (NPHPH). When considering only these five confirmed C2-domain mutations, the association remains statistically significant (P=0.001). Altogether, the data support that heterozygous non-synonymous variants of RPGRIP1 may cause or increase the susceptibility to various forms of glaucoma and that among other factors, physical impairment of the interaction of RPGRIP1with different proteins may contribute to the pathogenesis of forms of glaucoma.

30 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the RA biosynthesis, degradation and signalling pathways is provided and the main functions of this molecule during embryogenesis are reviewed.
Abstract: Retinoic acid (RA) is a vitamin A-derived, non-peptidic, small lipophilic molecule that acts as ligand for nuclear RA receptors (RARs), converting them from transcriptional repressors to activators. The distribution and levels of RA in embryonic tissues are tightly controlled by regulated synthesis through the action of specific retinol and retinaldehyde dehydrogenases and by degradation via specific cytochrome P450s (CYP26s). Recent studies indicate that RA action involves an interplay between diffusion (morphogen-like) gradients and the establishment of signalling boundaries due to RA metabolism, thereby allowing RA to finely control the differentiation and patterning of various stem/progenitor cell populations. Here, we provide an overview of the RA biosynthesis, degradation and signalling pathways and review the main functions of this molecule during embryogenesis.

758 citations

Journal ArticleDOI
TL;DR: Retinoic acid has complex and pleiotropic functions during vertebrate development and some of these functions could be maintained throughout the life of an organism to regulate cell-lineage decisions and/or the differentiation of stem cell populations, highlighting possibilities for regenerative medicine.
Abstract: Retinoic acid (RA) has complex and pleiotropic functions during vertebrate development. Recent work in several species has increased our understanding of the roles of RA as a signalling molecule. These functions rely on a tight control of RA distribution within embryonic tissues through the combined action of synthesizing and metabolizing enzymes, possibly leading to diffusion gradients. Also important is the switching of nuclear receptors from a transcriptionally repressing state to an activating state. In addition, cross-talk with other key embryonic signals, especially fibroblast growth factors (FGFs) and sonic hedgehog (SHH), is being uncovered. Some of these functions could be maintained throughout the life of an organism to regulate cell-lineage decisions and/or the differentiation of stem cell populations, highlighting possibilities for regenerative medicine.

656 citations

Journal ArticleDOI
TL;DR: The magnitude of the demands imposed on this single layer of cells in order to execute these tasks, will become apparent to the reader of this review as will the number of clinical disorders that take origin from these cells.
Abstract: Retinal pigment epithelial cells (RPE) constitute a simple layer of cuboidal cells that are strategically situated behind the photoreceptor (PR) cells. The inconspicuousness of this monolayer contrasts sharply with its importance [1]. The relationship between the RPE and PR cells is crucial to sight; this is evident from basic and clinical studies demonstrating that primary dysfunctioning of the RPE can result in visual cell death and blindness. RPE cells carry out many functions including the conversion and storage of retinoid, the phagocytosis of shed PR outer segment membrane, the absorption of scattered light, ion and fluid transport and RPE-PR apposition. The magnitude of the demands imposed on this single layer of cells in order to execute these tasks, will become apparent to the reader of this review as will the number of clinical disorders that take origin from these cells.

509 citations

Journal ArticleDOI
TL;DR: This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.
Abstract: Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.

448 citations

Journal ArticleDOI
TL;DR: Differences in microdeletions of FOXF1 were associated with hypoplastic left heart syndrome and gastrointestinal atresias, probably due to haploinsufficiency for the neighboring FOXC2 and FOXL1 genes, reveal the phenotypic consequences of gene alterations in cis.
Abstract: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare, neonatally lethal developmental disorder of the lung with defining histologic abnormalities typically associated with multiple congenital anomalies (MCA). Using array CGH analysis, we have identified six overlapping microdeletions encompassing the FOX transcription factor gene cluster in chromosome 16q24.1q24.2 in patients with ACD/MPV and MCA. Subsequently, we have identified four different heterozygous mutations (frameshift, nonsense, and no-stop) in the candidate FOXF1 gene in unrelated patients with sporadic ACD/MPV and MCA. Custom-designed, high-resolution microarray analysis of additional ACD/MPV samples revealed one microdeletion harboring FOXF1 and two distinct microdeletions upstream of FOXF1, implicating a position effect. DNA sequence analysis revealed that in six of nine deletions, both breakpoints occurred in the portions of Alu elements showing eight to 43 base pairs of perfect microhomology, suggesting replication error Microhomology-Mediated Break-Induced Replication (MMBIR)/Fork Stalling and Template Switching (FoSTeS) as a mechanism of their formation. In contrast to the association of point mutations in FOXF1 with bowel malrotation, microdeletions of FOXF1 were associated with hypoplastic left heart syndrome and gastrointestinal atresias, probably due to haploinsufficiency for the neighboring FOXC2 and FOXL1 genes. These differences reveal the phenotypic consequences of gene alterations in cis.

386 citations