scispace - formally typeset
Search or ask a question
Author

Lorenzo Bonaguro

Bio: Lorenzo Bonaguro is an academic researcher from University of Bonn. The author has contributed to research in topics: Medicine & Immunology. The author has an hindex of 8, co-authored 17 publications receiving 842 citations. Previous affiliations of Lorenzo Bonaguro include German Center for Neurodegenerative Diseases.

Papers
More filters
Journal ArticleDOI
Jonas Schulte-Schrepping1, Nico Reusch1, Daniela Paclik2, Kevin Baßler1, Stephan Schlickeiser2, Bowen Zhang3, Benjamin Krämer4, Tobias Krammer, Sophia Brumhard2, Lorenzo Bonaguro1, Elena De Domenico5, Daniel Wendisch2, Martin Grasshoff3, Theodore S. Kapellos1, Michael Beckstette3, Tal Pecht1, Adem Saglam5, Oliver Dietrich, Henrik E. Mei6, Axel Schulz6, Claudia Conrad2, Désirée Kunkel2, Ehsan Vafadarnejad, Cheng-Jian Xu3, Cheng-Jian Xu7, Arik Horne1, Miriam Herbert1, Anna Drews5, Charlotte Thibeault2, Moritz Pfeiffer2, Stefan Hippenstiel2, Andreas C. Hocke2, Holger Müller-Redetzky2, Katrin-Moira Heim2, Felix Machleidt2, Alexander Uhrig2, Laure Bosquillon de Jarcy2, Linda Jürgens2, Miriam Stegemann2, Christoph R. Glösenkamp2, Hans-Dieter Volk2, Christine Goffinet2, Markus Landthaler8, Emanuel Wyler8, Philipp Georg2, Maria Schneider2, Chantip Dang-Heine2, Nick Neuwinger2, Kai Kappert2, Rudolf Tauber2, Victor M. Corman2, Jan Raabe4, Kim Melanie Kaiser4, Michael To Vinh4, Gereon Rieke4, Christian Meisel2, Thomas Ulas5, Matthias Becker5, Robert Geffers, Martin Witzenrath2, Christian Drosten2, Norbert Suttorp2, Christof von Kalle2, Florian Kurth9, Florian Kurth10, Florian Kurth2, Kristian Händler5, Joachim L. Schultze1, Joachim L. Schultze5, Anna C. Aschenbrenner7, Anna C. Aschenbrenner1, Yang Li7, Yang Li3, Jacob Nattermann4, Birgit Sawitzki2, Antoine-Emmanuel Saliba, Leif E. Sander2, Angel Angelov, Robert Bals, Alexander Bartholomäus, Anke Becker, Daniela Bezdan, Ezio Bonifacio, Peer Bork, Thomas Clavel, Maria Colomé-Tatché, Andreas Diefenbach, Alexander T. Dilthey, Nicole Fischer, Konrad U. Förstner, Julia-Stefanie Frick, Julien Gagneur, Alexander Goesmann, Torsten Hain, Michael Hummel, Stefan Janssen, Jörn Kalinowski, René Kallies, Birte Kehr, Andreas Keller, Sarah Kim-Hellmuth, Christoph Klein, Oliver Kohlbacher, Jan O. Korbel, Ingo Kurth, Kerstin U. Ludwig, Oliwia Makarewicz, Manja Marz, Alice C. McHardy, Christian Mertes, Markus M. Nöthen, Peter Nürnberg, Uwe Ohler, Stephan Ossowski, Jörg Overmann, Silke Peter, Klaus Pfeffer, Anna R. Poetsch, Alfred Pühler, Nikolaus Rajewsky, Markus Ralser, Olaf Rieß, Stephan Ripke, Ulisses Nunes da Rocha, Philip Rosenstiel, Philipp H. Schiffer, Eva-Christina Schulte, Alexander Sczyrba, Oliver Stegle, Jens Stoye, Fabian J. Theis, Janne Vehreschild, Jörg Vogel, Max von Kleist, Andreas Walker, Jörn Walter, Dagmar Wieczorek, John Ziebuhr 
17 Sep 2020-Cell
TL;DR: This study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and it reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.

1,042 citations

Journal ArticleDOI
TL;DR: An insight is provided into the contribution of human monocytes to the progression of these diseases and their candidacy as potential therapeutic cell targets are highlighted.
Abstract: Human monocytes are divided in three major populations; classical (CD14+CD16-), non-classical (CD14dimCD16+), and intermediate (CD14+CD16+). Each of these subsets is distinguished from each other by the expression of distinct surface markers and by their functions in homeostasis and disease. In this review, we discuss the most up-to-date phenotypic classification of human monocytes that has been greatly aided by the application of novel single-cell transcriptomic and mass cytometry technologies. Furthermore, we shed light on the role of these plastic immune cells in already recognized and emerging human chronic diseases, such as obesity, atherosclerosis, chronic obstructive pulmonary disease, lung fibrosis, lung cancer, and Alzheimer's disease. Our aim is to provide an insight into the contribution of human monocytes to the progression of these diseases and highlight their candidacy as potential therapeutic cell targets.

427 citations

Journal ArticleDOI
26 May 2021-Nature
TL;DR: Wang et al. as mentioned in this paper proposed Swarm Learning, a decentralized machine learning approach that unifies edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator.
Abstract: Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.

236 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the observed immune deviation of neutrophils in COVID-19 and summarize several promising therapeutic attempts to precisely target neutrophILS and their reactivity in patients with COVID19.
Abstract: Strong evidence has been accumulated since the beginning of the COVID-19 pandemic that neutrophils play an important role in the pathophysiology, particularly in those with severe disease courses. While originally considered to be a rather homogeneous cell type, recent attention to neutrophils has uncovered their fascinating transcriptional and functional diversity as well as their developmental trajectories. These new findings are important to better understand the many facets of neutrophil involvement not only in COVID-19 but also many other acute or chronic inflammatory diseases, both communicable and non-communicable. Here, we highlight the observed immune deviation of neutrophils in COVID-19 and summarize several promising therapeutic attempts to precisely target neutrophils and their reactivity in patients with COVID-19.

168 citations

Journal ArticleDOI
TL;DR: This article performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis.
Abstract: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.

159 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

01 Dec 2016
TL;DR: Insight is provided into how the three sensors of ER homeostasis monitor distinct types of stress and the ability of Perturb-seq to dissect complex cellular responses are highlighted.
Abstract: Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.

593 citations

Journal ArticleDOI
TL;DR: In this paper, the major genomic and metabolic characteristics of myeloid-derived suppressor cells (MDSCs) are discussed and how these characteristics shape MDSC function and could facilitate therapeutic targeting of these cells particularly in cancer and in autoimmune diseases.
Abstract: Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes with potent immunosuppressive activity They are implicated in the regulation of immune responses in many pathological conditions and are closely associated with poor clinical outcomes in cancer Recent studies have indicated key distinctions between MDSCs and classical neutrophils and monocytes, and, in this Review, we discuss new data on the major genomic and metabolic characteristics of MDSCs We explain how these characteristics shape MDSC function and could facilitate therapeutic targeting of these cells, particularly in cancer and in autoimmune diseases Additionally, we briefly discuss emerging data on MDSC involvement in pregnancy, neonatal biology and COVID-19

522 citations

Journal ArticleDOI
01 Oct 2020-Cell
TL;DR: A critical appraisal of the potential for neurotropism and mechanisms of neuropathogenesis of SARS-CoV-2, as they relate to the acute and chronic neurological consequences of the infection is provided.

452 citations