scispace - formally typeset
Search or ask a question
Author

Lorenzo Burgos

Bio: Lorenzo Burgos is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Prunus armeniaca & Shoot. The author has an hindex of 34, co-authored 107 publications receiving 3101 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results showed that the simultaneous overexpression of Cu/Znsod and apx or at least apx in the cytosol of transgenic tobacco plants alleviates, to some extent, the damage produced by water stress conditions, and underline the complexity of the regulation network of plant antioxidant defences during drought stress.
Abstract: In order to understand the role of cytosolic antioxidant enzymes in drought stress protection, transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants overexpressing cytosolic Cu/Zn-superoxide dismutase (cytsod) (EC 1.15.1.1) or ascorbate peroxidase (cytapx) (EC 1.11.1.1) alone, or in combination, were produced and tested for tolerance against mild water stress. The results showed that the simultaneous overexpression of Cu/Znsod and apx or at least apx in the cytosol of transgenic tobacco plants alleviates, to some extent, the damage produced by water stress conditions. This was correlated with higher water use efficiency and better photosynthetic rates. In general, oxidative stress parameters, such as lipid peroxidation, electrolyte leakage, and H(2)O(2) levels, were higher in non-transformed plants than in transgenic lines, suggesting that, at the least, overexpression of cytapx protects tobacco membranes from water stress. In these conditions, the activity of other antioxidant enzymes was induced in transgenic lines at the subcellular level. Moreover, an increase in the activity of some antioxidant enzymes was also observed in the chloroplast of transgenic plants overexpressing cytsod and/or cytapx. These results suggest the positive influence of cytosolic antioxidant metabolism on the chloroplast and underline the complexity of the regulation network of plant antioxidant defences during drought stress.

240 citations

Journal ArticleDOI
TL;DR: Some cultivars, such as ‘Cristobalina’ and ‘Brooks’, could successfully break dormancy already when grown at an altitude above 325 m and may have their chilling requirements satisfied in the region of Murcia, if grown at least 650 m above sea level.

193 citations

Journal ArticleDOI
TL;DR: Analysis of self-compatible cultivars of apricot, Currot and Canino suggests that cv Canino has an additional mutation, not linked to the S-locus, which causes a loss of pollen-S activity when present in pollen, and supports the proposal that the S'-locus products besides other S- locus independent factors are required for gametophytic SI in Prunus.
Abstract: Loss of pollen-S function in Prunus self-compatible mutants has recently been associated with deletions or insertions in S-haplotype-specific F-box (SFB) genes. We have studied two self-compatible cultivars of apricot (Prunus armeniaca), Currot (SCSC) and Canino (S2SC), sharing the naturally occurring self-compatible (SC)-haplotype. Sequence analysis showed that whereas the SC-RNase is unaltered, a 358-bp insertion is found in the SFBC gene, resulting in the expression of a truncated protein. The alteration of this gene is associated with self-incompatibility (SI) breakdown, supporting previous evidence that points to SFB being the pollen-S gene of the Prunus SI S-locus. On the other hand, PCR analysis of progenies derived from Canino showed that pollen grains carrying the S2-haplotype were also able to overcome the incompatibility barrier. However, alterations in the SFB2 gene or evidence of pollen-S duplications were not detected. A new class of F-box genes encoding a previously uncharacterized protein with high sequence similarity (approximately 62%) to Prunus SFB proteins was identified in this work, but the available data rules them out of producing S-heteroallelic pollen and thus the cause of the pollen-part mutation. These results suggest that cv Canino has an additional mutation, not linked to the S-locus, which causes a loss of pollen-S activity when present in pollen. As a whole, these findings support the proposal that the S-locus products besides other S-locus independent factors are required for gametophytic SI in Prunus.

128 citations

Journal ArticleDOI
TL;DR: The results suggest that transformation of plum plants with genes encoding antioxidant enzymes enhances the tolerance to salinity.
Abstract: This work was supported by the Spanish Ministry of Economy and Competitiveness (Project CICYT BFU2009-07443) cofinanced by FEDER funds. PDV acknowledges the CSIC and the Spanish Ministry of Economy and Competitiveness for his ‘Ramon y Cajal’ research contract, cofinanced by FEDER funds. GBE and CP thank CSIC for their ‘JAE-pre’ and ‘JAE-doc’ fellowships.

114 citations

Journal ArticleDOI
TL;DR: In this article, the putrescine treatment increased fruit firmness and reduced bruising zones caused by the mechanical damage, and the most remarkable effect of mechanical damage was the significant increase in spermidine concentrations found after the compression in control apricots, which could be considered as a physiological marker of physiological damage.
Abstract: Apricots (Prunus armeniaca L. cv Mauricio) harvested at commercial ripening stage were treated with putrescine (1 mM), then mechanically damaged with a 25 N force and stored at 10 °C for 6 d. Putrescine treatment increased fruit firmness and reduced the bruising zones caused by the mechanical damage. Putrescine-treated fruits (both damaged and nondamaged) showed different physiological behavior than controls. Color change, weight loss, ethylene emission, and respiration rate were reduced in putrescine-treated fruits. The most remarkable effect of the mechanical damage was the significant increase in spermidine concentrations found after the compression in control apricots, which could be considered as a physiological marker of mechanical damage.

107 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The generation, sites of production and role of ROS as messenger molecules as well as inducers of oxidative damage are described and the antioxidative defense mechanisms operating in the cells for scavenging of ROS overproduced under various stressful conditions of the environment are described.
Abstract: Reactive oxygen species (ROS) are produced as a normal product of plant cellular metabolism. Various environmental stresses lead to excessive production of ROS causing progressive oxidative damage and ultimately cell death. Despite their destructive activity, they are well-described second messengers in a variety of cellular processes, including conferment of tolerance to various environmental stresses. Whether ROS would serve as signaling molecules or could cause oxidative damage to the tissues depends on the delicate equilibrium between ROS production, and their scavenging. Efficient scavenging of ROS produced during various environmental stresses requires the action of several nonenzymatic as well as enzymatic antioxidants present in the tissues. In this paper, we describe the generation, sites of production and role of ROS as messenger molecules as well as inducers of oxidative damage. Further, the antioxidative defense mechanisms operating in the cells for scavenging of ROS overproduced under various stressful conditions of the environment have been discussed in detail.

4,012 citations

Journal ArticleDOI
23 Feb 2017-Agronomy
TL;DR: This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress, including morphological, physiological and biochemical changes, and some of the mechanisms thought to protect the photosynthetic machinery.
Abstract: This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.

874 citations

Journal ArticleDOI
TL;DR: A short review on each virus of the Top 10 list and its importance is presented, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top10.
Abstract: Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.

842 citations

BookDOI
01 Jan 2001
TL;DR: This work has shown that self-Incompatibility and Incongruity Barriers Between Different Species are related and the goal of this paper is to establish a database of these barriers and to describe their mechanisms.
Abstract: 1 The Basic Features of Self-Incompatibility.- 2 The Genetics of Self-Incompatibility.- 3 Cellular and Molecular Biology of Self-Incompatibility.- 4 Breakdown of the Self-Incompatibility Character, S Mutations and the Evolution of Self-Incompatible Systems.- 5 Incompatibility and Incongruity Barriers Between Different Species.- 6 Conclusions.- References.

732 citations

Journal ArticleDOI
TL;DR: For the first time, virus resistance has been developed in cucumber, non-transgenically, not visibly affecting plant development and without long-term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.
Abstract: Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N' and C' termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off-target sites. Non-transgenic heterozygous eif4e mutant plants were selected for the production of non-transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus-W. In contrast, heterozygous mutant and non-mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non-transgenically, not visibly affecting plant development and without long-term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.

594 citations