scispace - formally typeset
Search or ask a question
Author

Lori J. Groven

Other affiliations: Picatinny Arsenal, Purdue University
Bio: Lori J. Groven is an academic researcher from South Dakota School of Mines and Technology. The author has contributed to research in topics: Combustion & Ammonium perchlorate. The author has an hindex of 21, co-authored 72 publications receiving 1441 citations. Previous affiliations of Lori J. Groven include Picatinny Arsenal & Purdue University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, fuel-rich, mechanically activated composite particles (aluminum/polytetrafluoroethylene, Al/PTFE 90/10 and 70/30-wt.%) are considered as replacements for reference aluminum powders (spherical, flake, or nanoscale) in a composite solid propellant.

218 citations

Journal ArticleDOI
TL;DR: In this article, morphological, thermal, and chemical characterization of fuel-rich aluminum-polytetrafluoroethylene (70-30-wt-%) reactive particles formed by high and low energy milling was reported.
Abstract: Micrometer-sized aluminum is widely used in energetics; however, performance of propellants, explosives, and pyrotechnics could be significantly improved if its ignition barriers could be disrupted. We report morphological, thermal, and chemical characterization of fuel rich aluminum-polytetrafluoroethylene (70–30 wt-%) reactive particles formed by high and low energy milling. Average particle sizes range from 15–78 μm; however, specific surface areas range from approx. 2–7 m2 g−1 due to milling induced voids and cleaved surfaces. Scanning electron microscopy and energy dispersive spectroscopy reveal uniform distribution of PTFE, providing nanoscale mixing within particles. The combustion enthalpy was found to be 20.2 kJ g−1, though a slight decrease (0.8 kJ g−1) results from extended high energy milling due to α-AlF3 formation. For high energy mechanically activated particles, differential scanning calorimetry in argon shows a strong, exothermic pre-ignition reaction that onsets near 440 °C and a second, more dominant exotherm that onsets around 510 °C. Scans in O2-Ar indicate that, unlike physical mixtures, more complete reaction occurs at higher heating rates and the reaction onset is drastically reduced (approx. 440 °C). Simple flame tests reveal that these altered Al-polytetrafluoroethylene particles light readily unlike micrometer-sized aluminum. Safety testing also shows these particles have high electrostatic discharge (89.9–108 mJ), impact (>213 cm), and friction (>360 N) ignition thresholds. These particles may be useful for reactive liners, thermobaric explosives, and pyrolants. In particular, the altered reactivity, large particle size and relatively low specific surface area of these fuel rich particles make them an interesting replacement for aluminum in solid propellants.

129 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported that the thermal conductivity of heat transfer nanofluids containing Ni coated single wall carbon nanotubes can be enhanced by applied magnetic field, and they attributed gradual magnetic clumping to the gradual cause of the TC decrease in the magnetic field.
Abstract: In this paper, we report that the thermal conductivity (TC) of heat transfer nanofluids containing Ni coated single wall carbon nanotube can be enhanced by applied magnetic field. A reasonable explanation for these interesting results is that Ni coated nanotubes form aligned chains under applied magnetic field, which improves thermal conductivity via increased contacts. On longer holding in magnetic field, the nanotubes gradually move and form large clumps of nanotubes, which eventually decreases the TC. When we reduce the magnetic field strength and maintain a smaller field right after TC reaches the maximum, the TC value can be kept longer compared to without magnetic field. We attribute gradual magnetic clumping to the gradual cause of the TC decrease in the magnetic field. We also found that the time to reach the maximum peak value of TC is increased as the applied magnetic field is reduced. Scanning electron microscopy images show that the Ni coated nantubes are aligned well under the influence of a ...

115 citations

Journal ArticleDOI
TL;DR: In this paper, an efficient approach that combines short-term (minutes) high-energy dry ball milling and wet grinding to tailor the nano-and microstructure of Ni+Al composite reactive particles is reported.
Abstract: An efficient approach that combines short-term (minutes) high-energy dry ball milling and wet grinding to tailor the nano- and microstructure of Ni+Al composite reactive particles is reported. Varying the ball-milling conditions allows control of the volume fraction of two distinct milling-induced microstructures, that is, coarse and nanolaminated. It is found that increasing the fraction of nanolaminated structure present in the composite particles leads to a decrease in their ignition temperature (Tig) from 700 and 500 K. Material with nanolaminated microstructure is also found to be more sensitive to impact ignition when compared with particles with a coarse microstructure. It is shown that kinetic energy (Wcr) thresholds for impact ignition, obtained for an optimized nanolaminated microstructure, is only 100 J. High-speed imaging showed that the impact-induced ignition occurs through formation of hot spots caused by impact. Molecular dynamic simulations of a model system suggest that impact-induced lo...

98 citations

Journal ArticleDOI
TL;DR: In this article, a process for the synthesis of silver nanoparticles protected with a passivating shell of dodecylamine in toluene media using tin(II) acetate as a reducing agent was developed.
Abstract: We have developed a process for the synthesis of silver nanoparticles protected with a passivating shell of dodecylamine in toluene media using tin(II) acetate as a reducing agent. Based on the electrochemical series, during the reduction process Sn(II) oxidizes into Sn(IV) which reduces Ag(I) into Ag(0). The nucleation and growth processes result in particles with diameters in the range 5–20 nm. This simple non-aqueous one pot synthesis can be easily scaled up to produce grams of nanoparticles in a matter of hours. The particles can also be dispersed in many non-aqueous solvents which make them a suitable candidate for many applications. Characterization of the end product using TEM, UV-Vis spectroscopy, and powder X-ray diffraction verified the presence of a silver metallic core whereas TGA confirmed the presence of a dodecylamine shell. The resulting particles were used in non-aqueous conductive ink formulation. The ink was used to print conductive tracks on flexible substrates like Epson photo paper and polyimide (Kapton) using an Aerosol Jet based printing technique.

78 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

Journal Article
TL;DR: In this paper, the authors presented a method to detect the presence of a tumor in the human brain using EPFL-206025 data set, which was created on 2015-03-03, modified on 2017-05-12
Abstract: Note: Times Cited: 875 Reference EPFL-ARTICLE-206025doi:10.1021/cr0501846View record in Web of Science URL: ://WOS:000249839900009 Record created on 2015-03-03, modified on 2017-05-12

1,704 citations

Journal ArticleDOI
TL;DR: It has been found nan ofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids, which can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids.
Abstract: Nanofluids are potential heat transfer fluids with enhanced thermophysical properties and heat transfer performance can be applied in many devices for better performances (i.e. energy, heat transfer and other performances). In this paper, a comprehensive literature on the applications and challenges of nanofluids have been compiled and reviewed. Latest up to date literatures on the applications and challenges in terms of PhD and Master thesis, journal articles, conference proceedings, reports and web materials have been reviewed and reported. Recent researches have indicated that substitution of conventional coolants by nanofluids appears promising. Specific application of nanofluids in engine cooling, solar water heating, cooling of electronics, cooling of transformer oil, improving diesel generator efficiency, cooling of heat exchanging devices, improving heat transfer efficiency of chillers, domestic refrigerator-freezers, cooling in machining, in nuclear reactor and defense and space have been reviewed and presented. Authors also critically analyzed some of the applications and identified research gaps for further research. Moreover, challenges and future directions of applications of nanofluids have been reviewed and presented in this paper. Based on results available in the literatures, it has been found nanofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids. This can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids. Because of its superior thermal performances, latest up to date literatures on this property have been summarized and presented in this paper as well. However, few barriers and challenges that have been identified in this review must be addressed carefully before it can be fully implemented in the industrial applications.

1,558 citations

Journal ArticleDOI
TL;DR: The International Nanofluid Property Benchmark Exercise (INPBE) as mentioned in this paper was held in 1998, where the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids" was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady state methods, and optical methods.
Abstract: This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.

942 citations