scispace - formally typeset
Search or ask a question
Author

Loris Barraud

Bio: Loris Barraud is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Silicon & Monocrystalline silicon. The author has an hindex of 20, co-authored 53 publications receiving 3109 citations. Previous affiliations of Loris Barraud include National Renewable Energy Laboratory & Swiss Center for Electronics and Microtechnology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: An optimized two-step deposition process allows the formation of uniform layers of metal halide perovskites on textured silicon layers, enabling tandem silicon/perovskite solar cells with improved optical design and efficiency.
Abstract: Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front side to be compatible with the perovskite fabrication process. This concession leads to higher potential production costs, higher reflection losses and non-ideal light trapping. To tackle this issue, we developed a top cell deposition process that achieves the conformal growth of multiple compounds with controlled optoelectronic properties directly on the micrometre-sized pyramids of textured monocrystalline silicon. Tandem devices featuring a silicon heterojunction cell and a nanocrystalline silicon recombination junction demonstrate a certified steady-state efficiency of 25.2%. Our optical design yields a current density of 19.5 mA cm−2 thanks to the silicon pyramidal texture and suggests a path for the realization of 30% monolithic perovskite/silicon tandem devices.

990 citations

Journal ArticleDOI
TL;DR: In this paper, Essig et al. fabricate very efficient dual-and triple-junction solar cells by placing one or two III-V solar cells on top of a silicon solar cell.
Abstract: To improve the efficiency of photovoltaic devices while keeping the same spatial footprint, solar cells can be stacked on top of each other. Here, Essig et al. fabricate very efficient dual-junction and triple-junction solar cells by placing one or two III–V solar cells on top of a silicon solar cell.

429 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.
Abstract: Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

368 citations

Journal ArticleDOI
TL;DR: In this article, a 1 cm2 near-infrared transparent perovskite solar cell with 14.5% steady-state efficiency was presented, as compared to 16.4% on 0.25 cm2.
Abstract: Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm2), is still far from standard industrial sizes. We present a 1 cm2 near-infrared transparent perovskite solar cell with 14.5% steady-state efficiency, as compared to 16.4% on 0.25 cm2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency of 25.2%, with a 0.25 cm2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify effic...

329 citations

Journal ArticleDOI
TL;DR: In this article, H2 plasma treatments are used during film deposition to improve the passivation of the a-Si:H layers, and 4 cm2 heterojunction solar cells were produced with industry compatible processes, yielding open-circuit voltages up to 725 mV and aperture area efficiencies up to 21%.
Abstract: Silicon heterojunction solar cells have high open-circuit voltages thanks to excellent passivation of the wafer surfaces by thin intrinsic amorphous silicon (a-Si:H) layers deposited by plasma-enhanced chemical vapor deposition. We show a dramatic improvement in passivation when H2 plasma treatments are used during film deposition. Although the bulk of the a-Si:H layers is slightly more disordered after H2 treatment, the hydrogenation of the wafer/film interface is nevertheless improved with as-deposited layers. Employing H2 treatments, 4 cm2 heterojunction solar cells were produced with industry-compatible processes, yielding open-circuit voltages up to 725 mV and aperture area efficiencies up to 21%.

252 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a silicon heterojunction with interdigitated back contacts was presented, achieving an efficiency of 26.3% and a detailed loss analysis to guide further developments.
Abstract: The efficiency of silicon solar cells has a large influence on the cost of most photovoltaics panels. Here, researchers from Kaneka present a silicon heterojunction with interdigitated back contacts reaching an efficiency of 26.3% and provide a detailed loss analysis to guide further developments.

2,052 citations

Journal ArticleDOI
17 Feb 2017-Science
TL;DR: A contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells is reported.
Abstract: Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).

1,912 citations

Journal ArticleDOI
TL;DR: This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovSKite solar cells, and possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.
Abstract: With rapid progress in a power conversion efficiency (PCE) to reach 25%, metal halide perovskite-based solar cells became a game-changer in a photovoltaic performance race. Triggered by the development of the solid-state perovskite solar cell in 2012, intense follow-up research works on structure design, materials chemistry, process engineering, and device physics have contributed to the revolutionary evolution of the solid-state perovskite solar cell to be a strong candidate for a next-generation solar energy harvester. The high efficiency in combination with the low cost of materials and processes are the selling points of this cell over commercial silicon or other organic and inorganic solar cells. The characteristic features of perovskite materials may enable further advancement of the PCE beyond those afforded by the silicon solar cells, toward the Shockley-Queisser limit. This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovskite solar cells. Furthermore, possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.

1,116 citations

Journal ArticleDOI
TL;DR: The recent advances in passivation of imperfections and suppressing ion migration to achieve improved efficiency and highly stable perovskite solar cells are reviewed.
Abstract: All highly-efficient organic–inorganic halide perovskite (OIHP) solar cells to date are made of polycrystalline perovskite films which contain a high density of defects, including point and extended imperfections. The imperfections in OIHP materials play an important role in the process of charge recombination and ion migration in perovskite solar cells (PSC), which heavily influences the resulting device energy conversion efficiency and stability. Here we review the recent advances in passivation of imperfections and suppressing ion migration to achieve improved efficiency and highly stable perovskite solar cells. Due to the ionic nature of OIHP materials, the defects in the photoactive films are inevitably electrically charged. The deep level traps induced by particular charged defects in OIHP films are major non-radiative recombination centers; passivation by coordinate bonding, ionic bonding, or chemical conversion have proven effective in mitigating the negative impacts of these deep traps. Shallow level charge traps themselves may contribute little to non-radiative recombination, but the migration of charged shallow level traps in OIHP films results in unfavorable band bending, interfacial reactions, and phase segregation, influencing the carrier extraction efficiency. Finally, the impact of defects and ion migration on the stability of perovskite solar cells is described.

1,040 citations