scispace - formally typeset
Search or ask a question
Author

Lothar Rink

Bio: Lothar Rink is an academic researcher from RWTH Aachen University. The author has contributed to research in topics: Zinc & Immune system. The author has an hindex of 63, co-authored 235 publications receiving 13189 citations. Previous affiliations of Lothar Rink include University of Lübeck & Laval University.


Papers
More filters
Journal ArticleDOI
TL;DR: Rather than being a toxic metal ion, zinc is an essential trace element and plays a significant role in cytotoxic events in single cells in the brain, and cytotoxicity in consequence of ischemia or trauma involves the accumulation of free zinc.
Abstract: Compared to several other metal ions with similar chemical properties, zinc is relatively harmless. Only exposure to high doses has toxic effects, making acute zinc intoxication a rare event. In addition to acute intoxication, long-term, high-dose zinc supplementation interferes with the uptake of copper. Hence, many of its toxic effects are in fact due to copper deficiency. While systemic homeostasis and efficient regulatory mechanisms on the cellular level generally prevent the uptake of cytotoxic doses of exogenous zinc, endogenous zinc plays a significant role in cytotoxic events in single cells. Here, zinc influences apoptosis by acting on several molecular regulators of programmed cell death, including caspases and proteins from the Bcl and Bax families. One organ where zinc is prominently involved in cell death is the brain, and cytotoxicity in consequence of ischemia or trauma involves the accumulation of free zinc. Rather than being a toxic metal ion, zinc is an essential trace element. Whereas intoxication by excessive exposure is rare, zinc deficiency is widespread and has a detrimental impact on growth, neuronal development, and immunity, and in severe cases its consequences are lethal. Zinc deficiency caused by malnutrition and foods with low bioavailability, aging, certain diseases, or deregulated homeostasis is a far more common risk to human health than intoxication.

1,118 citations

Journal ArticleDOI
TL;DR: Impaired immune functions due to zinc deficiency are shown to be reversed by an adequate zinc supplementation, which must be adapted to the actual requirements of the patient.
Abstract: Zinc is known to be essential for all highly proliferating cells in the human body, especially the immune system. A variety of in vivo and in vitro effects of zinc on immune cells mainly depend on the zinc concentration. All kinds of immune cells show decreased function after zinc depletion. In monocytes, all functions are impaired, whereas in natural killer cells, cytotoxicity is decreased, and in neutrophil granulocytes, phagocytosis is reduced. The normal functions of T cells are impaired, but autoreactivity and alloreactivity are increased. B cells undergo apoptosis. Impaired immune functions due to zinc deficiency are shown to be reversed by an adequate zinc supplementation, which must be adapted to the actual requirements of the patient. High dosages of zinc evoke negative effects on immune cells and show alterations that are similar to those observed with zinc deficiency. Furthermore, when peripheral blood mononuclear cells are incubated with zinc in vitro, the release of cytokines such as interleukins (IL)-1 and -6, tumor necrosis factor-alpha, soluble IL-2R and interferon-gamma is induced. In a concentration of 100 micro mol/L, zinc suppresses natural killer cell killing and T-cell functions whereas monocytes are activated directly, and in a concentration of 500 micro mol/L, zinc evokes a direct chemotactic activation of neutrophil granulocytes. All of these effects are discussed in this short overview.

556 citations

Journal ArticleDOI
01 Nov 2000
TL;DR: The relationship between Zn and the immune system is complex, since there are four different types of influence associated with Zn: dietary intake and the resorption of Zn depends on the composition of the diet and also on age and disease status.
Abstract: Zn is an essential trace element for all organisms. In human subjects body growth and development is strictly dependent on Zn. The nervous, reproductive and immune systems are particularly influenced by Zn deficiency, as well as by increased levels of Zn. The relationship between Zn and the immune system is complex, since there are four different types of influence associated with Zn. (1) The dietary intake and the resorption of Zn depends on the composition of the diet and also on age and disease status. (2) Zn is a cofactor in more than 300 enzymes influencing various organ functions having a secondary effect on the immune system. (3) Direct effects of Zn on the production, maturation and function of leucocytes. (4) Zn influences the function of immunostimulants used in the experimental systems. Here we summarize all four types of influence on the immune function. Nutritional aspects of Zn, the physiology of Zn, the influence of Zn on enzymes and cellular functions, direct effects of Zn on leucocytes at the cellular and molecular level, Zn-altered function of immunostimulants and the therapeutic use of Zn will be discussed in detail.

511 citations

Journal ArticleDOI
TL;DR: The latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli are summarized.
Abstract: Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

483 citations

Journal ArticleDOI
TL;DR: Molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency are reported, and links between altered zinc homeostasis and disease development are described, ensuring the benefits of zinc supplementation for a malfunctioning immune system become clear.
Abstract: After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.

393 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2010

5,842 citations

Journal ArticleDOI
TL;DR: An overview of redox and non-redox metal-induced formation of free radicals and the role of oxidative stress in toxic action of metals is provided.

2,429 citations

Journal ArticleDOI
TL;DR: Continuity in clinic- and community-based samples suggests there is a dose-response relationship between depression and these inflammatory markers, lending strength to the contention that the cardiac risk conferred by depression is not exclusive to patient populations.
Abstract: Objective:To assess the magnitude and direction of associations of depression with C-reactive protein (CRP), interleukin (IL)-1, and IL-6 in community and clinical samples.Methods:Systematic review of articles published between January 1967 and January 2008 in the PubMed and PsycINFO electronic data

2,360 citations

Journal ArticleDOI
TL;DR: The molecular basis of PTSAg toxicity is presented in the context of two diseases known to be caused by these exotoxins: toxic shock syndrome and staphylococcal food poisoning.
Abstract: This article reviews the literature regarding the structure and function of two types of exotoxins expressed by Staphylococcus aureus, pyrogenic toxin superantigens (PTSAgs) and hemolysins. The molecular basis of PTSAg toxicity is presented in the context of two diseases known to be caused by these exotoxins: toxic shock syndrome and staphylococcal food poisoning. The family of staphylococcal PTSAgs presently includes toxic shock syndrome toxin-1 (TSST-1) and most of the staphylococcal enterotoxins (SEs) (SEA, SEB, SEC, SED, SEE, SEG, and SEH). As the name implies, the PTSAgs are multifunctional proteins that invariably exhibit lethal activity, pyrogenicity, superantigenicity, and the capacity to induce lethal hypersensitivity to endotoxin. Other properties exhibited by one or more staphylococcal PTSAgs include emetic activity (SEs) and penetration across mucosal barriers (TSST-1). A detailed review of the molecular mechanisms underlying the toxicity of the staphylococcal hemolysins is also presented.

1,686 citations

Journal ArticleDOI
TL;DR: There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution and developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system.
Abstract: The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors’ chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.

1,679 citations