scispace - formally typeset
Search or ask a question
Author

Lou-Chuang Lee

Bio: Lou-Chuang Lee is an academic researcher from Academia Sinica. The author has contributed to research in topics: Magnetopause & Magnetic reconnection. The author has an hindex of 58, co-authored 309 publications receiving 11552 citations. Previous affiliations of Lou-Chuang Lee include United States Naval Research Laboratory & University of Maryland, College Park.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was found that reflected electrons can result in the amplification of electromagnetic waves via a relativistic normal cyclotron resonance, which may explain the recently discovered terrestrial kilometric radiation.
Abstract: During magnetospheric substorms, electrons with energies of about 1 keV are injected from the plasma-sheet region into the auroral region. A fraction of these energetic electrons can precipitate into the upper atmosphere, and the rest are reflected because of the mirror effect of the convergent geomagnetic field. It is found that these reflected electrons can result in the amplification of electromagnetic waves via a relativistic normal cyclotron resonance. This process may explain the recently discovered terrestrial kilometric radiation.

951 citations

Journal ArticleDOI
TL;DR: In this article, the power delivered by the solar wind dynamo to the open magnetosphere is calculated based on the concept of field line reconnection, independent of the MHD steady reconnection theories.
Abstract: The power delivered by the solar wind dynamo to the open magnetosphere is calculated based on the concept of field line reconnection, independent of the MHD steady reconnection theories. By recognizing a previously overlooked geometrical relationship between the reconnection electric field and the magnetic field, the calculated power is shown to be approximately proportional to the Akasofu-Perreault energy coupling function for the magnetospheric substorm. In addition to the polar cap potential, field line reconnection also gives rise to parallel electric fields on open field lines in the high-latitude cusp and the polar cap regions.

502 citations

Journal ArticleDOI
TL;DR: In this article, it is suggested that the flux transfer events observed by ISEE satellites can be the result of multiple X-line reconnection at the dayside magnetopause, which may be caused by the development of a tearing instability.
Abstract: It is suggested that the flux transfer events (FTE's) observed by ISEE satellites can be the result of multiple X-line reconnection at the dayside magnetopause, which may be caused by the development of a tearing instability. In the presence of the y-component of the magnetic field (By) in the transition region of the magnetopause, the tearing instability leads to the interconnection of the geomagnetic field lines and the interplanetary field lines, and hence to the occurrence of FTE's. Twisted field lines and field-aligned currents are formed as a consequence of the tearing instability. The flow direction of the field-aligned currents depends on By and the results are found to be consistent with satellite observations.

459 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the global transient luminous event (TLE) distributions and rates based on the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) experiment onboard the FORMOSAT-2 satellite.
Abstract: [1] We report the global transient luminous event (TLE) distributions and rates based on the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) experiment onboard the FORMOSAT-2 satellite. ISUAL observations cover 45°S to 25°N latitude during the northern summer and 25°S to 45°N latitude during the northern winter. From July 2004 to June 2007, ISUAL recorded 5,434 elves, 633 sprites, 657 halos, and 13 gigantic jets. Surprisingly, elve is the dominant type of TLEs, while sprites/halos are a distant second. Elve occurrence rate jumps as the sea surface temperature exceeds 26 degrees Celsius, manifesting an ocean-atmosphere-ionosphere coupling. In the ISUAL survey, elves concentrate over the Caribbean Sea, South China Sea, east Indian Ocean, central Pacific Ocean, west Atlantic Ocean, and southwest Pacific Ocean; while sprites congregate over central Africa, Japan Sea, and west Atlantic Ocean. The ISUAL experiment observed global rates of 3.23, 0.50, 0.39, and 0.01 events per minute for elves, sprites, halos, and gigantic jets, respectively. Taking the instrumental detection sensitivity and the restricted survey area into account, the corrected global occurrence rates for sprites and elves likely are a factor of two and an order of magnitude higher, respectively. ISUAL observations also indicate that the relative frequency of high peak current lightning (>80 kA) is 10 times higher over the oceans than over the land. On the basis of the corrected ISUAL elve global occurrence rate, the total electron content at the lower ionosphere above elve hot zones was computed to be elevated by more than 5%.

222 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index.
Abstract: After a brief review of magnetospheric and interplanetary phenomena for intervals with enhanced solar wind-magnetosphere interaction, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index. The associated storm/substorm relationship problem is also reviewed. Although the physics of this relationship does not seem to be fully understood at this time, basic and fairly well established mechanisms of this relationship are presented and discussed. Finally, toward the advancement of geomagnetic storm research, some recommendations are given concerning future improvements in monitoring existing geomagnetic indices as well as the solar wind near Earth.

1,963 citations

Journal ArticleDOI
02 Nov 2007-Science
TL;DR: A 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3° from the Small Magellanic Cloud is found, which implies that it was a singular event such as a supernova or coalescence of relativistic objects.
Abstract: Pulsar surveys offer a rare opportunity to monitor the radio sky for impulsive burst-like events with millisecond durations. We analyzed archival survey data and found a 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3 degrees from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the universe imply that the burst is less than 1 gigaparsec distant. No further bursts were seen in 90 hours of additional observations, which implies that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and, if detected, could serve as cosmological probes.

1,644 citations

Journal ArticleDOI
TL;DR: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is the fifth NASA Medium-class Explorer (MIDEX), launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms as discussed by the authors.
Abstract: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is the fifth NASA Medium-class Explorer (MIDEX), launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. The mission employs five identical micro-satellites (hereafter termed “probes”) which line up along the Earth’s magnetotail to track the motion of particles, plasma and waves from one point to another and for the first time resolve space–time ambiguities in key regions of the magnetosphere on a global scale. The probes are equipped with comprehensive in-situ particles and fields instruments that measure the thermal and super-thermal ions and electrons, and electromagnetic fields from DC to beyond the electron cyclotron frequency in the regions of interest. The primary goal of THEMIS, which drove the mission design, is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map (∼10 RE): (i) a local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection at ∼25 RE. However, the probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives, namely: how the radiation belts are energized on time scales of 2–4 hours during the recovery phase of storms, and how the pristine solar wind’s interaction with upstream beams, waves and the bow shock affects Sun–Earth coupling. THEMIS’s open data policy, platform-independent dataset, open-source analysis software, automated plotting and dissemination of data within hours of receipt, dedicated ground-based observatory network and strong links to ancillary space-based and ground-based programs. promote a grass-roots integration of relevant NASA, NSF and international assets in the context of an international Heliophysics Observatory over the next decade. The mission has demonstrated spacecraft and mission design strategies ideal for Constellation-class missions and its science is complementary to Cluster and MMS. THEMIS, the first NASA micro-satellite constellation, is a technological pathfinder for future Sun-Earth Connections missions and a stepping stone towards understanding Space Weather.

1,456 citations

Journal ArticleDOI
TL;DR: The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere.
Abstract: The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and associated electronics. The dual configuration provides redundancy and also permits accurate removal of the dipolar portion of the spacecraft magnetic field. The instrument provides (1) near real-time data at nominally one vector per 92 s as key parameter data for broad dissemination, (2) rapid data at 10.9 vectors s−1 for standard analysis, and (3) occasionally, snapshot (SS) memory data and Fast Fourier Transform data (FFT), both based on 44 vectors s−1. These measurements will be precise (0.025%), accurate, ultra-sensitive (0.008 nT/step quantization), and where the sensor noise level is <0.006 nT r.m.s. for 0–10 Hz. The digital processing unit utilizes a 12-bit microprocessor controlled analogue-to-digital converter. The instrument features a very wide dynamic range of measurement capability, from ±4 nT up to ±65 536 nT per axis in eight discrete ranges. (The upper range permits complete testing in the Earth's field.) In the FTT mode power spectral density elements are transmitted to the ground as fast as once every 23 s (high rate), and 2.7 min of SS memory time series data, triggered automatically by pre-set command, requires typically about 5.1 hours for transmission. Standard data products are expected to be the following vector field averages: 0.0227-s (detail data from SS), 0.092 s (‘detail’ in standard mode), 3 s, 1 min, and 1 hour, in both GSE and GSM coordinates, as well as the FFT spectral elements. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the solar wind: (1) as a collisionless plasma laboratory, at all time scales, macro, meso and micro, but concentrating on the kinetic scale, the highest time resolution of the instrument (=0.022 s), (2) as a consequence of solar energy and mass output, (3) as an external source of plasma that can couple mass, momentum, and energy to the Earth's magnetosphere, and (4) as it is modified as a consequence of its imbedded field interacting with the moon. Since the GEOTAIL Inboard Magnetometer (GIM), which is similar to the MFI instrument, was developed by members of our team, we provide a brief discussion of GIM related science objectives, along with MFI related science goals.

1,368 citations

Journal ArticleDOI
TL;DR: In this paper, a simple Harris sheet configuration with a specified set of initial conditions, including a finite amplitude, magnetic island perturbation to trigger the dynamics of magnetic reconnection is studied.
Abstract: The Geospace Environmental Modeling (GEM) Reconnection Challenge project is presented and the important results, which are presented in a series of companion papers, are summarized. Magnetic reconnection is studied in a simple Harris sheet configuration with a specified set of initial conditions, including a finite amplitude, magnetic island perturbation to trigger the dynamics. The evolution of the system is explored with a broad variety of codes, ranging from fully electromagnetic particle in cell (PIC) codes to conventional resistive magnetohydrodynamic (MHD) codes, and the results are compared. The goal is to identify the essential physics which is required to model collisionless magnetic reconnection. All models that include the Hall effect in the generalized Ohm's law produce essentially indistinguishable rates of reconnection, corresponding to nearly Alfvenic inflow velocities. Thus the rate of reconnection is insensitive to the specific mechanism which breaks the frozen-in condition, whether resistivity, electron inertia, or electron thermal motion. The reconnection rate in the conventional resistive MHD model, in contrast, is dramatically smaller unless a large localized or current dependent resistivity is used. The Hall term brings the dynamics of whistler waves into the system. The quadratic dispersion property of whistlers (higher phase speed at smaller spatial scales) is the key to understanding these results. The implications of these results for trying to model the global dynamics of the magnetosphere are discussed.

1,282 citations