scispace - formally typeset
Search or ask a question
Author

Louis A. Clark

Bio: Louis A. Clark is an academic researcher from Northwestern University. The author has contributed to research in topics: Adsorption & Diffusion (business). The author has an hindex of 18, co-authored 27 publications receiving 2148 citations. Previous affiliations of Louis A. Clark include University of Wisconsin-Madison & Humboldt University of Berlin.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a comparison of their catalyst compositions with literature in this area suggests that the increase in activity due to the addition of silica or zirconia may be a result of higher surface acidity.
Abstract: Sol-gel prepared mixtures of silica or zirconia with titania are shown to have significantly higher activities than pure titania for the complete photocatalytic oxidation of ethylene. These higher activities are only apparent when the respective catalysts are stabilized by sintering. The differences become even more pronounced when the catalysts are used in a tubular reactor. Optimum mixture concentrations are found to be 12 wt % zirconia and 16 wt % silica in titania. Both catalyst types exhibit activity maxima with respect to sintering temperature. It is hypothesized that the maxima arise from opposing effects of densification and phase transformation versus beneficial sintering. A comparison of our catalyst compositions with literature in this area suggests that the increase in activity due to the addition of silica or zirconia may be a result of higher surface acidity. However, isoelectric point measurements employing the unsintered and sintered catalysts show no conclusive increase in surface acidity...

647 citations

Journal ArticleDOI
TL;DR: This paper discusses the application of object-oriented programming (OOP) design concepts to the development of molecular simulation code and implements a general interface in F90 for calculating pairwise interactions that can be extended easily to any number of different forcefield models.
Abstract: This paper discusses the application of object-oriented programming (OOP) design concepts to the development of molecular simulation code. A number of new languages such as Fortran 90 (F90) have been developed over the last decade that support the OOP design philosophy. We briefly describe the salient features of F90 and some basic object-oriented design principles. As an illustration of the design concepts we implement a general interface in F90 for calculating pairwise interactions that can be extended easily to any number of different forcefield models. The ideas presented here are used in the development of a mu ltipurpose si mulation c ode, named Music. An example of the use of Music for grand canonical Monte Carlo (GCMC) simulations of flexible sorbate molecules in zeolites is given. The example illustrates how OOP allowed existing code for molecular dynamics and GCMC to be easily combined to perform hybrid GCMC simulations with minimal coding effort.

365 citations

Journal ArticleDOI
TL;DR: The results indicate that structure‐based computational design can be successfully applied to further improve the binding of high‐affinity antibodies and improve the single‐mutant success rate.
Abstract: Improving the affinity of a high-affinity protein–protein interaction is a challenging problem that has practical applications in the development of therapeutic biomolecules. We used a combination of structure-based computational methods to optimize the binding affinity of an antibody fragment to the I-domain of the integrin VLA1. Despite the already high affinity of the antibody (Kd ∼7 nM) and the moderate resolution (2.8 A) of the starting crystal structure, the affinity was increased by an order of magnitude primarily through a decrease in the dissociation rate. We determined the crystal structure of a high-affinity quadruple mutant complex at 2.2 A. The structure shows that the design makes the predicted contacts. Structural evidence and mutagenesis experiments that probe a hydrogen bond network illustrate the importance of satisfying hydrogen bonding requirements while seeking higher-affinity mutations. The large and diverse set of interface mutations allowed refinement of the mutant binding affinity prediction protocol and improvement of the single-mutant success rate. Our results indicate that structure-based computational design can be successfully applied to further improve the binding of high-affinity antibodies.

179 citations

Journal ArticleDOI
TL;DR: In this paper, the photocatalytic degradation of ethylene in airstreams has been studied over the temperature range 30-110 °C using a packed bed reactor containing sol-gel-derived TiO2 or platinized TiO 2 particulates.
Abstract: The photocatalytic degradation of ethylene in airstreams has been studied over the temperature range 30–110 °C using a packed bed reactor containing sol-gel-derived TiO2 or platinized TiO2 particulates. Results of this study indicate that the reactivity of ethylene is greatly enhanced at increased temperatures and that the fraction of ethylene that reacts is stoichiometrically oxidized to CO2 under all operating conditions. The effect of raising the temperature has been ascribed to decreasing adsorption of water for both types of catalysts, as well as an increase in conventional heterogeneous catalytic reactions occurring on the Pt/TiO2 catalyst. In addition, platinizing the TiO2 photocatalyst and increasing the content of water vapor in the gaseous feed streams both decrease the rate of photocatalytic oxidation of ethylene. The activation energies for the photocatalytic and heterogenous catalytic oxidation of ethylene were determined to be 13.9–16.0 kJ mol−1 and 82.8 kJ mol−1 respectively.

155 citations

Journal ArticleDOI
TL;DR: Variation of the environment shape at the critical transition states is shown to affect the course of reaction and leads to a more robust definition of transition state shape selectivity.
Abstract: The most commonly cited example of a transition state shape selective reaction, m-xylene disproportionation in zeolites, is examined to determine if the local spatial environment of a reaction can significantly alter selectivity. In the studied reaction, ZPE-corrected rate limiting energy barriers are 136 kJ/mol for the methoxide-mediated pathway and 109 to 145 kJ/mol for the diphenylmethane-mediated pathway. Both pathways are likely to contribute to selectivity and disfavor one product isomer (1,3,5-trimethylbenzene), but relative selectivity to the other two isomers varies with pore geometry, mechanistic pathway, and inclusion of entropic effects. Most importantly, study of one pathway in three different common zeolite framework types (FAU, MFI, and MOR) allows explicit and practically oriented consideration of pore shape. Variation of the environment shape at the critical transition states is thus shown to affect the course of reaction. Barrier height shifts on the order of 10-20 kJ/mol are achievable. Observed selectivities do not agree with the transition state characteristics calculated here and, hence, are most likely due to product shape selectivity. Further examination of the pathways highlights the importance of mechanistic steps that do not result in isomer-defining bonds and leads to a more robust definition of transition state shape selectivity.

105 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: For the first time, a multi-variables optimization approach is described to determine the optimum operation parameters so as to enhance process performance and photooxidation efficiency in the photocatalytic water treatment process.

4,293 citations

Journal ArticleDOI
TL;DR: This chapter discusses the development of DFT as a tool for Calculating Atomic andMolecular Properties and its applications, as well as some of the fundamental and Computational aspects.
Abstract: I. Introduction: Conceptual vs Fundamental andComputational Aspects of DFT1793II. Fundamental and Computational Aspects of DFT 1795A. The Basics of DFT: The Hohenberg−KohnTheorems1795B. DFT as a Tool for Calculating Atomic andMolecular Properties: The Kohn−ShamEquations1796C. Electronic Chemical Potential andElectronegativity: Bridging Computational andConceptual DFT1797III. DFT-Based Concepts and Principles 1798A. General Scheme: Nalewajski’s ChargeSensitivity Analysis1798B. Concepts and Their Calculation 18001. Electronegativity and the ElectronicChemical Potential18002. Global Hardness and Softness 18023. The Electronic Fukui Function, LocalSoftness, and Softness Kernel18074. Local Hardness and Hardness Kernel 18135. The Molecular Shape FunctionsSimilarity 18146. The Nuclear Fukui Function and ItsDerivatives18167. Spin-Polarized Generalizations 18198. Solvent Effects 18209. Time Evolution of Reactivity Indices 1821C. Principles 18221. Sanderson’s Electronegativity EqualizationPrinciple18222. Pearson’s Hard and Soft Acids andBases Principle18253. The Maximum Hardness Principle 1829IV. Applications 1833A. Atoms and Functional Groups 1833B. Molecular Properties 18381. Dipole Moment, Hardness, Softness, andRelated Properties18382. Conformation 18403. Aromaticity 1840C. Reactivity 18421. Introduction 18422. Comparison of Intramolecular ReactivitySequences18443. Comparison of Intermolecular ReactivitySequences18494. Excited States 1857D. Clusters and Catalysis 1858V. Conclusions 1860VI. Glossary of Most Important Symbols andAcronyms1860VII. Acknowledgments 1861VIII. Note Added in Proof 1862IX. References 1865

3,890 citations

Journal ArticleDOI
TL;DR: A review of the use of the TiO 2 photocatalyst for remediation and decontamination of wastewater, report the recent work done, important achievements and problems is presented in this paper, however, a lot more is needed from engineering design and modelling for successful application of the laboratory scale techniques to large scale operation.
Abstract: Even though heterogeneous photocatalysis appeared in many forms, photodegradation of organic pollutants has recently been the most widely investigated. By far, titania has played a much larger role in this scenario compared to other semiconductor photocatalysts due to its cost effectiveness, inert nature and photostability. Extensive literature analysis has shown many possibilities of improving the efficiency of photodecomposition over titania by combining the photoprocess with either physical or chemical operations. The resulting combined processes revealed a flexible line of action for wastewater treatment technologies. The choice of treatment method usually depends upon the composition of the wastewater. However, a lot more is needed from engineering design and modelling for successful application of the laboratory scale techniques to large-scale operation. The present review paper seeks to offer an overview of the dramatic trend in the use of the TiO 2 photocatalyst for remediation and decontamination of wastewater, report the recent work done, important achievements and problems.

2,573 citations

Journal ArticleDOI
TL;DR: The field of surface science provides a unique approach to understand bulk, surface and interfacial phenomena occurring during TiO2 photocatalysis as mentioned in this paper, including photon absorption, charge transport and trapping, electron transfer dynamics, adsorbed state, mechanisms, poisons and promoters, and phase and form.

1,768 citations

Journal ArticleDOI
TL;DR: RASPA as discussed by the authors is a software package for simulating adsorption and diffusion of molecules in flexible nanoporous materials, which implements the latest state-of-the-art algorithms for molecular dynamics and Monte Carlo (MC) in various ensembles including symplectic/measure-preserving integrators, Ewald summation, configurational-bias MC, continuous fractional component MC, reactive MC and Baker's minimisation.
Abstract: A new software package, RASPA, for simulating adsorption and diffusion of molecules in flexible nanoporous materials is presented. The code implements the latest state-of-the-art algorithms for molecular dynamics and Monte Carlo (MC) in various ensembles including symplectic/measure-preserving integrators, Ewald summation, configurational-bias MC, continuous fractional component MC, reactive MC and Baker's minimisation. We show example applications of RASPA in computing coexistence properties, adsorption isotherms for single and multiple components, self- and collective diffusivities, reaction systems and visualisation. The software is released under the GNU General Public License.

1,139 citations