scispace - formally typeset
Search or ask a question
Author

Louis De Barros

Bio: Louis De Barros is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Induced seismicity & Geology. The author has an hindex of 18, co-authored 44 publications receiving 785 citations. Previous affiliations of Louis De Barros include University College Dublin & University of California, Davis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analysis and modelling of long-period seismicity at volcanoes in Italy, Costa Rica and Peru shows that it could instead be caused by slow rupture along faults in the upper volcanic edifice.
Abstract: Volcanic eruptions are often preceded by long-period seismic events that were thought to be generated by the resonance of cracks filled with magmatic fluid. Analysis and modelling of long-period seismicity at volcanoes in Italy, Costa Rica and Peru shows that it could instead be caused by slow rupture along faults in the upper volcanic edifice.

141 citations

Journal ArticleDOI
25 Nov 2016-Science
TL;DR: The curvature along the major subduction zones of the world is calculated, showing that mega-earthquakes preferentially rupture flat (low-curvature) interfaces, and a simplified analytic model demonstrates that heterogeneity in shear strength increases with curvature.
Abstract: The 2004 Sumatra-Andaman and 2011 Tohoku-Oki earthquakes highlighted gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution: A fast convergence rate and young buoyant lithosphere are not required to produce mega-earthquakes. We calculated the curvature along the major subduction zones of the world, showing that mega-earthquakes preferentially rupture flat (low-curvature) interfaces. A simplified analytic model demonstrates that heterogeneity in shear strength increases with curvature. Shear strength on flat megathrusts is more homogeneous, and hence more likely to be exceeded simultaneously over large areas, than on highly curved faults.

94 citations

Journal ArticleDOI
TL;DR: In this paper, water was injected at high pressure in different geological structures inside a fault damaged zone, in limestone at 280 m depth in the Low Noise Underground Laboratory (France). Induced seismicity, as well as strains, pressure and flow rate, was continuously monitored during the injections.
Abstract: An increase in fluid pressure in faults can trigger seismicity and large aseismic motions. Understanding how fluid and faults interact is an essential goal for seismic hazard and reservoir monitoring, but this key relation remains unclear. We developed an in situ experiment of fluid injections at a 10 meter scale. Water was injected at high pressure in different geological structures inside a fault damaged zone, in limestone at 280 m depth in the Low Noise Underground Laboratory (France). Induced seismicity, as well as strains, pressure, and flow rate, was continuously monitored during the injections. Although nonreversible deformations related to fracture reactivations were observed for all injections, only a few tests generated seismicity. Events are characterized by a 0.5-to-4 kHz content and a small magnitude (approximately −3.5). They are located within 1.5 m accuracy between 1 and 12 m from the injections. Comparing strain measurements and seismicity shows that more than 96% of the deformation is aseismic. The seismic moment is also small compared to the one expected from the injected volume. Moreover, a dual seismic behavior is observed as (1) the spatiotemporal distribution of some cluster of events is clearly independent from the fluid diffusion (2) while a diffusion-type pattern can be observed for some others clusters. The seismicity might therefore appear as an indirect effect to the fluid pressure, driven by aseismic motion and related stress perturbation transferred through failure.

68 citations

Journal ArticleDOI
TL;DR: In this paper, an experiment was conducted to reactivate a natural fault by fluid pressure in shale materials, where two microseismic events were recorded during several injection phases in five different locations within the fault zone.
Abstract: Clay formations are present in reservoirs and earthquake faults, but questions remain on their mechanical behavior, as they can vary from ductile (aseismic) to brittle (seismic). An experiment, at a scale of 10 m, aims to reactivate a natural fault by fluid pressure in shale materials. The injection area was surrounded by a dense monitoring network comprising pressure, deformation, and seismicity sensors, in a well-characterized geological setting. Thirty-two microseismic events were recorded during several injection phases in five different locations within the fault zone. Their computed magnitude ranged between −4.3 and −3.7. Their spatiotemporal distribution, compared with the measured displacement at the injection points, shows that most of the deformation induced by the injection is aseismic. Whether the seismicity is controlled by the fault architecture, mineralogy of fracture filling, fluid, and/or stress state is then discussed. The fault damage zone architecture and mineralogy are of crucial importance, as seismic slip mainly localizes on the sealed-with-calcite fractures which predominate in the fault damage zone. As no seismicity is observed in the close vicinity of the injection areas, the presence of fluid seems to prevent seismic slips. The fault core acts as an impermeable hydraulic barrier that favors fluid confinement and pressurization. Therefore, the seismic behavior seems to be strongly sensitive to the structural heterogeneity (including permeability) of the fault zone, which leads to a heterogeneous stress response to the pressurized volume.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the temporal evolution of a seismic swarm that occurred over a 10-day period in October 2015 in the extensional rift of the Corinth Gulf (Greece) using high-resolution earthquakes relocations.
Abstract: The primary processes driving seismic swarms are still under debate. Here, we study the temporal evolution of a seismic swarm that occurred over a 10-day period in October 2015 in the extensional rift of the Corinth Gulf (Greece) using high-resolution earthquakes relocations. The seismicity radially migrates on a normal fault at a fluid diffusion velocity (~125 m/day). However, this migration occurs intermittently, with periods of fast expansion (2-to-10 km/day) during short seismic bursts alternating with quiescent periods. Moreover, the growing phases of the swarm illuminates a high number of repeaters. The swarm migration is likely the results of a combination of multiple driving processes. Fluid up flow in the fault may induce aseismic slip episodes, separated by phases of fluid pressure build-up. The stress perturbation due to aseismic slip may activate small asperities that produce bursts of seismicity during the most intense phase of the swarm.

53 citations


Cited by
More filters
11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations

Journal ArticleDOI
05 Oct 2018-Science
TL;DR: The three-dimensional geometries of all seismically active global subduction zones are calculated and the resulting model, called Slab2, provides a uniform geometrical analysis of all currently subducting slabs.
Abstract: Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interfaces of subduction zones host Earth’s largest earthquakes and are likely the only faults capable of magnitude 9+ ruptures. Despite these facts, our knowledge of subduction zone geometry—which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes—is incomplete. We calculated the three-dimensional geometries of all seismically active global subduction zones. The resulting model, called Slab2, provides a uniform geometrical analysis of all currently subducting slabs.

733 citations

Journal ArticleDOI
TL;DR: In the field of volcano seismology, a wide variety of signals originating in the transport of magma and related hydrothermal fluids and their interaction with solid rock have been studied as discussed by the authors.

366 citations

01 Mar 2001
TL;DR: The theory of the dynamic bulk modulus, K(ω), of a porous rock whose saturation occurs in patches of 100% saturation each of two different fluids, is developed within the context of the quasi-static Biot theory as discussed by the authors.
Abstract: The theory of the dynamic bulk modulus, K(ω), of a porous rock, whose saturation occurs in patches of 100% saturation each of two different fluids, is developed within the context of the quasi-static Biot theory. The theory describes the crossover from the Biot–Gassmann–Woods result at low frequencies to the Biot–Gassmann–Hill result at high. Exact results for the approach to the low and the high frequency limits are derived. A simple closed-form analytic model based on these exact results, as well as on the properties of K(ω) extended to the complex ω-plane, is presented. Comparison against the exact solution in simple geometries for the case of a gas and water saturated rock demonstrates that the analytic theory is extremely accurate over the entire frequency range. Aside from the usual parameters of the Biot theory, the model has two geometrical parameters, one of which is the specific surface area, S/V, of the patches. In the special case that one of the fluids is a gas, the second parameter is a different, but also simple, measure of the patch size of the stiff fluid. The theory, in conjunction with relevant experiments, would allow one to deduce information about the sizes and shapes of the patches or, conversely, to make an accurate sonic-to-seismic conversion if the size and saturation values are approximately known.

316 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the behavior of slow slip over a vast range of spatial and temporal scales, and show that changes in fluid pressure or slip rate can cause a fault to transition between stable and unstable fault slip behavior.

279 citations