scispace - formally typeset
Search or ask a question
Author

Louis Giglio

Other affiliations: Goddard Space Flight Center
Bio: Louis Giglio is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Moderate-resolution imaging spectroradiometer & Fire detection. The author has an hindex of 65, co-authored 122 publications receiving 23433 citations. Previous affiliations of Louis Giglio include Goddard Space Flight Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step.
Abstract: . New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997–2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997–2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year−1 with significant interannual variability during 1997–2001 (2.8 Pg C year−1 in 1998 and 1.6 Pg C year−1 in 2001). Globally, emissions during 2002–2007 were relatively constant (around 2.1 Pg C year−1) before declining in 2008 (1.7 Pg C year−1) and 2009 (1.5 Pg C year−1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002–2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001–2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year−1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.

2,494 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated fire emissions during the 8 year period from 1997 to 2004 using satellite data and the CASA biogeochemical model, and found that on average approximately 58 Pg C year −1 was fixed by plants as NPP, and approximately 95% of this was returned back to the atmosphere via R h.
Abstract: Biomass burning represents an important source of atmospheric aerosols and greenhouse gases, yet little is known about its interannual variability or the underlying mechanisms regulating this variability at continental to global scales. Here we investigated fire emissions during the 8 year period from 1997 to 2004 using satellite data and the CASA biogeochemical model. Burned area from 2001–2004 was derived using newly available active fire and 500 m. burned area datasets from MODIS following the approach described by Giglio et al. (2006). ATSR and VIRS satellite data were used to extend the burned area time series back in time through 1997. In our analysis we estimated fuel loads, including organic soil layer and peatland fuels, and the net flux from terrestrial ecosystems as the balance between net primary production (NPP), heterotrophic respiration ( R h ), and biomass burning, using time varying inputs of precipitation (PPT), temperature, solar radiation, and satellite-derived fractional absorbed photosynthetically active radiation (fAPAR). For the 1997–2004 period, we found that on average approximately 58 Pg C year −1 was fixed by plants as NPP, and approximately 95% of this was returned back to the atmosphere via R h . Another 4%, or 2.5 Pg C year −1 was emitted by biomass burning; the remainder consisted of losses from fuel wood collection and subsequent burning. At a global scale, burned area and total fire emissions were largely decoupled from year to year. Total carbon emissions tracked burning in forested areas (including deforestation fires in the tropics), whereas burned area was largely controlled by savanna fires that responded to different environmental and human factors. Biomass burning emissions showed large interannual variability with a range of more than 1 Pg C year −1 , with a maximum in 1998 (3.2 Pg C year −1 ) and a minimum in 2000 (2.0 Pg C year −1 ).

1,639 citations

Journal ArticleDOI
TL;DR: An improved replacement detection algorithm is presented that offers increased sensitivity to smaller, cooler fires as well as a significantly lower false alarm rate.

1,553 citations

Journal ArticleDOI
TL;DR: The proposed MODIS standard products for land applications are described along with the current plans for data quality assessment and product validation.
Abstract: The first Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is planned for launch by NASA in 1998. This instrument will provide a new and improved capability for terrestrial satellite remote sensing aimed at meeting the needs of global change research. The MODIS standard products will provide new and improved tools for moderate resolution land surface monitoring. These higher order data products have been designed to remove the burden of certain common types of data processing from the user community and meet the more general needs of global-to-regional monitoring, modeling, and assessment. The near-daily coverage of moderate resolution data from MODIS, coupled with the planned increase in high-resolution sampling from Landsat 7, will provide a powerful combination of observations. The full potential of MODIS will be realized once a stable and well-calibrated time-series of multispectral data has been established. In this paper the proposed MODIS standard products for land applications are described along with the current plans for data quality assessment and product validation.

1,415 citations

Journal ArticleDOI
TL;DR: The Global Fire Emissions Database (GFED4) as discussed by the authors provides global monthly burned area at 0.25°m spatial resolution from mid-1995 through the present and daily burned area for the time series extending back to August 2000.
Abstract: [1] We describe the fourth generation of the Global Fire Emissions Database (GFED4) burned area data set, which provides global monthly burned area at 0.25° spatial resolution from mid-1995 through the present and daily burned area for the time series extending back to August 2000. We produced the full data set by combining 500 m MODIS burned area maps with active fire data from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) family of sensors. We found that the global annual area burned for the years 1997 through 2011 varied from 301 to 377Mha, with an average of 348Mha. We assessed the interannual variability and trends in burned area on the basis of a region-specific definition of fire years. With respect to trends, we found a gradual decrease of 1.7Mhayr − 1 ( − 1.4%yr − 1) in Northern Hemisphere Africa since 2000, a gradual increase of 2.3Mhayr − 1 (+1.8%yr − 1) in Southern Hemisphere Africa also since 2000, a slight increase of 0.2Mhayr − 1 (+2.5%yr − 1) in Southeast Asia since 1997, and a rapid decrease of approximately 5.5Mhayr − 1 ( − 10.7%yr − 1) from 2001 through 2011 in Australia, followed by a major upsurge in 2011 that exceeded the annual area burned in at least the previous 14 years. The net trend in global burned area from 2000 to 2012 was a modest decrease of 4.3Mhayr − 1 ( − 1.2%yr − 1). We also performed a spectral analysis of the daily burned area time series and found no vestiges of the 16 day MODIS repeat cycle.

1,149 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the performance and validity of the MODIS vegetation indices (VI), the normalized difference vegetation index (NDVI) and enhanced vegetation index(EVI), produced at 1-km and 500-m resolutions and 16-day compositing periods.

6,563 citations

Journal ArticleDOI
TL;DR: The TRMM Multi-Satellite Precipitation Analysis (TMPA) as discussed by the authors provides a calibration-based sequential scheme for combining precipitation estimates from multiple satellites, as well as gauge analyses where feasible, at fine scales.
Abstract: The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) provides a calibration-based sequential scheme for combining precipitation estimates from multiple satellites, as well as gauge analyses where feasible, at fine scales (0.25° × 0.25° and 3 hourly). TMPA is available both after and in real time, based on calibration by the TRMM Combined Instrument and TRMM Microwave Imager precipitation products, respectively. Only the after-real-time product incorporates gauge data at the present. The dataset covers the latitude band 50°N–S for the period from 1998 to the delayed present. Early validation results are as follows: the TMPA provides reasonable performance at monthly scales, although it is shown to have precipitation rate–dependent low bias due to lack of sensitivity to low precipitation rates over ocean in one of the input products [based on Advanced Microwave Sounding Unit-B (AMSU-B)]. At finer scales the TMPA is successful at approximately reproducing the s...

6,179 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations