scispace - formally typeset
Search or ask a question
Author

Louis-Martin Rousseau

Bio: Louis-Martin Rousseau is an academic researcher from École Polytechnique de Montréal. The author has contributed to research in topics: Constraint programming & Vehicle routing problem. The author has an hindex of 36, co-authored 171 publications receiving 3794 citations. Previous affiliations of Louis-Martin Rousseau include École Normale Supérieure & Université de Montréal.


Papers
More filters
Book ChapterDOI
26 Jun 2018
TL;DR: The neural combinatorial optimization framework is extended to solve the traveling salesman problem (TSP) and the performance of the proposed framework alone is generally as good as high performance heuristics (OR-Tools).
Abstract: The aim of the study is to provide interesting insights on how efficient machine learning algorithms could be adapted to solve combinatorial optimization problems in conjunction with existing heuristic procedures. More specifically, we extend the neural combinatorial optimization framework to solve the traveling salesman problem (TSP). In this framework, the city coordinates are used as inputs and the neural network is trained using reinforcement learning to predict a distribution over city permutations. Our proposed framework differs from the one in [1] since we do not make use of the Long Short-Term Memory (LSTM) architecture and we opted to design our own critic to compute a baseline for the tour length which results in more efficient learning. More importantly, we further enhance the solution approach with the well-known 2-opt heuristic. The results show that the performance of the proposed framework alone is generally as good as high performance heuristics (OR-Tools). When the framework is equipped with a simple 2-opt procedure, it could outperform such heuristics and achieve close to optimal results on 2D Euclidean graphs. This demonstrates that our approach based on machine learning techniques could learn good heuristics which, once being enhanced with a simple local search, yield promising results.

242 citations

Journal ArticleDOI
TL;DR: This paper addresses a variant of the 2E-VRP that integrates constraints arising in city logistics such as time window constraints, synchronization constraints, and multiple trips at the second level and proposes an adaptive large neighborhood search to solve this problem.

171 citations

Journal ArticleDOI
TL;DR: This paper presents operators searching large neighborhoods in order to solve the vehicle routing problem that make use of the pruning and propagation techniques of constraint programming which allow an efficient search of such neighborhoods.
Abstract: This paper presents operators searching large neighborhoods in order to solve the vehicle routing problem. They make use of the pruning and propagation techniques of constraint programming which allow an efficient search of such neighborhoods. The advantages of using a large neighborhood are not only the increased probability of finding a better solution at each iteration but also the reduction of the need to invoke specially-designed methods to avoid local minima. These operators are combined in a variable neighborhood descent in order to take advantage of the different neighborhood structures they generate.

169 citations

Journal ArticleDOI
TL;DR: A hybrid method designed to solve a problem of dispatching and conflict free routing of automated guided vehicles (AGVs) in a flexible manufacturing system (FMS) with a decomposition method where the master problem is modelled with constraint programming and the subproblem (conflict free routing) with mixed integer programming.

146 citations

Journal ArticleDOI
TL;DR: The literature contains a sound body of work focused on improving decision making in generating units and transmission lines maintenance scheduling, and some important features such as network considerations, fuel management, and data uncertainty are explored.

130 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Book
01 Jan 2006
TL;DR: Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.
Abstract: Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics. The aim of this handbook is to capture the full breadth and depth of the constraint programming field and to be encyclopedic in its scope and coverage. While there are several excellent books on constraint programming, such books necessarily focus on the main notions and techniques and cannot cover also extensions, applications, and languages. The handbook gives a reasonably complete coverage of all these lines of work, based on constraint programming, so that a reader can have a rather precise idea of the whole field and its potential. Of course each line of work is dealt with in a survey-like style, where some details may be neglected in favor of coverage. However, the extensive bibliography of each chapter will help the interested readers to find suitable sources for the missing details. Each chapter of the handbook is intended to be a self-contained survey of a topic, and is written by one or more authors who are leading researchers in the area. The intended audience of the handbook is researchers, graduate students, higher-year undergraduates and practitioners who wish to learn about the state-of-the-art in constraint programming. No prior knowledge about the field is necessary to be able to read the chapters and gather useful knowledge. Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas. The handbook is organized in two parts. The first part covers the basic foundations of constraint programming, including the history, the notion of constraint propagation, basic search methods, global constraints, tractability and computational complexity, and important issues in modeling a problem as a constraint problem. The second part covers constraint languages and solver, several useful extensions to the basic framework (such as interval constraints, structured domains, and distributed CSPs), and successful application areas for constraint programming. - Covers the whole field of constraint programming - Survey-style chapters - Five chapters on applications Table of Contents Foreword (Ugo Montanari) Part I : Foundations Chapter 1. Introduction (Francesca Rossi, Peter van Beek, Toby Walsh) Chapter 2. Constraint Satisfaction: An Emerging Paradigm (Eugene C. Freuder, Alan K. Mackworth) Chapter 3. Constraint Propagation (Christian Bessiere) Chapter 4. Backtracking Search Algorithms (Peter van Beek) Chapter 5. Local Search Methods (Holger H. Hoos, Edward Tsang) Chapter 6. Global Constraints (Willem-Jan van Hoeve, Irit Katriel) Chapter 7. Tractable Structures for CSPs (Rina Dechter) Chapter 8. The Complexity of Constraint Languages (David Cohen, Peter Jeavons) Chapter 9. Soft Constraints (Pedro Meseguer, Francesca Rossi, Thomas Schiex) Chapter 10. Symmetry in Constraint Programming (Ian P. Gent, Karen E. Petrie, Jean-Francois Puget) Chapter 11. Modelling (Barbara M. Smith) Part II : Extensions, Languages, and Applications Chapter 12. Constraint Logic Programming (Kim Marriott, Peter J. Stuckey, Mark Wallace) Chapter 13. Constraints in Procedural and Concurrent Languages (Thom Fruehwirth, Laurent Michel, Christian Schulte) Chapter 14. Finite Domain Constraint Programming Systems (Christian Schulte, Mats Carlsson) Chapter 15. Operations Research Methods in Constraint Programming (John Hooker) Chapter 16. Continuous and Interval Constraints(Frederic Benhamou, Laurent Granvilliers) Chapter 17. Constraints over Structured Domains (Carmen Gervet) Chapter 18. Randomness and Structure (Carla Gomes, Toby Walsh) Chapter 19. Temporal CSPs (Manolis Koubarakis) Chapter 20. Distributed Constraint Programming (Boi Faltings) Chapter 21. Uncertainty and Change (Kenneth N. Brown, Ian Miguel) Chapter 22. Constraint-Based Scheduling and Planning (Philippe Baptiste, Philippe Laborie, Claude Le Pape, Wim Nuijten) Chapter 23. Vehicle Routing (Philip Kilby, Paul Shaw) Chapter 24. Configuration (Ulrich Junker) Chapter 25. Constraint Applications in Networks (Helmut Simonis) Chapter 26. Bioinformatics and Constraints (Rolf Backofen, David Gilbert)

1,527 citations

Journal ArticleDOI
TL;DR: This paper surveys the research on the metaheuristics for the Vehicle Routing Problem with Time Windows and describes basic features of each method, and experimental results for Solomon's benchmark test problems are presented and analyzed.
Abstract: This paper surveys the research on the metaheuristics for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW can be described as the problem of designing least cost routes from one depot to a set of geographically scattered points. The routes must be designed in such a way that each point is visited only once by exactly one vehicle within a given time interval; all routes start and end at the depot, and the total demands of all points on one particular route must not exceed the capacity of the vehicle. Metaheuristics are general solution procedures that explore the solution space to identify good solutions and often embed some of the standard route construction and improvement heuristics described in the first part of this article. In addition to describing basic features of each method, experimental results for Solomon's benchmark test problems are presented and analyzed.

845 citations