scispace - formally typeset
Search or ask a question
Author

Louise K. Refsgaard

Bio: Louise K. Refsgaard is an academic researcher from University of Copenhagen. The author has contributed to research in topics: Synapse & Vortioxetine. The author has an hindex of 4, co-authored 4 publications receiving 200 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Basic concepts of synapse structure and function are discussed, and a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders as well as neurodegenerative disorders are provided.
Abstract: Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page 783.

230 citations

Journal ArticleDOI
TL;DR: The PEAP results suggest that this paradigm might be successfully applied in mice to study affective pain.

29 citations

Journal ArticleDOI
TL;DR: The study supports that NMDARs could be a possible therapeutic target for treating depression and anxiety, however, selective antagonism of GluN2B subunit-containing N MDARs showed no effect on anxiety-like behaviours in this study.
Abstract: Evidence suggests that N-methyl-D-aspartate receptor (NMDAR) antagonists could be efficacious in treating depression and anxiety, but side effects constitute a challenge. This study evaluated the antidepressant-like and anxiolytic-like actions, and cognitive and motor side effects of four NMDAR antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty-induced hypophagia test, citalopram and MK-801 showed anxiogenic-like action. All NMDAR antagonists induced hyperactivity. The high doses of ketamine and MK-801 impaired performance in the modified Y-maze test, whereas S-ketamine and RO 25-6891 showed no effects in this test. Only MK-801 impaired rotarod performance. The study supports that NMDARs could be a possible therapeutic target for treating depression and anxiety. However, selective antagonism of GluN2B subunit-containing NMDARs showed no effect on anxiety-like behaviours in this study.

20 citations

Journal ArticleDOI
TL;DR: All four drugs, regardless of their mechanism of action, induced a positive affective bias in the ABT, although the overall effect of treatment was not statistically significant for sertraline and duloxetine.
Abstract: Affective biases seemingly play a crucial role for the onset and development of depression. Acute treatment with monoamine-based antidepressants positively influences emotional processing, and an early correction of biases likely results in repeated positive experiences that ultimately lead to improved mood. Using two conventional antidepressants, sertraline and duloxetine, we aimed to forward the characterization of a newly developed affective bias test (ABT) for rats. Further, we examined the effect of vortioxetine, a recently approved antidepressant, and the α2 adrenoceptor antagonist idazoxan on affective biases. Sprague Dawley rats were tested in an affective bias test using a fully balanced within-subject study design. Rats learned to associate two different digging substrates with a reward during six reward-pairing days. The absolute value of the rewards was identical, but the affective state at the time of learning induces a positive or negative bias towards the treatment-paired digging substrate at recall. The choice bias between the two digging substrates at recall represents the affective bias. Sertraline (1, 3 and 10 mg/kg), duloxetine (1, 3 and 10 mg/kg), vortioxetine (1, 3 and 10 mg/kg) and idazoxan (3 and 10 mg/kg) were tested in the ABT. All four drugs, regardless of their mechanism of action, induced a positive affective bias in the ABT, although the overall effect of treatment was not statistically significant for sertraline and duloxetine. The largest effects were induced by vortioxetine and idazoxan, both of which caused significant positive biases at all tested doses.

10 citations


Cited by
More filters
Journal ArticleDOI
19 Aug 2016-Science
TL;DR: Common principles revealed by maternal immune activation models are described, highlighting recent findings that strengthen their relevance for schizophrenia and autism and are starting to reveal the molecular mechanisms underlying the effects of MIA on offspring.
Abstract: Epidemiological evidence implicates maternal infection as a risk factor for autism spectrum disorder and schizophrenia. Animal models corroborate this link and demonstrate that maternal immune activation (MIA) alone is sufficient to impart lifelong neuropathology and altered behaviors in offspring. This Review describes common principles revealed by these models, highlighting recent findings that strengthen their relevance for schizophrenia and autism and are starting to reveal the molecular mechanisms underlying the effects of MIA on offspring. The role of MIA as a primer for a much wider range of psychiatric and neurologic disorders is also discussed. Finally, the need for more research in this nascent field and the implications for identifying and developing new treatments for individuals at heightened risk for neuroimmune disorders are considered.

760 citations

Journal ArticleDOI
TL;DR: FNDC5/irisin is placed as a novel agent capable of opposing synapse failure and memory impairment in AD, and restoration of its expression can ameliorate these phenotypes in rodent models.
Abstract: Defective brain hormonal signaling has been associated with Alzheimer's disease (AD), a disorder characterized by synapse and memory failure. Irisin is an exercise-induced myokine released on cleavage of the membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), also expressed in the hippocampus. Here we show that FNDC5/irisin levels are reduced in AD hippocampi and cerebrospinal fluid, and in experimental AD models. Knockdown of brain FNDC5/irisin impairs long-term potentiation and novel object recognition memory in mice. Conversely, boosting brain levels of FNDC5/irisin rescues synaptic plasticity and memory in AD mouse models. Peripheral overexpression of FNDC5/irisin rescues memory impairment, whereas blockade of either peripheral or brain FNDC5/irisin attenuates the neuroprotective actions of physical exercise on synaptic plasticity and memory in AD mice. By showing that FNDC5/irisin is an important mediator of the beneficial effects of exercise in AD models, our findings place FNDC5/irisin as a novel agent capable of opposing synapse failure and memory impairment in AD.

433 citations

Journal ArticleDOI
TL;DR: A vicious cycle of accumulating α-Syn and deregulated dopamine that triggers synaptic dysfunction and impaired neuronal communication, ultimately causing synaptopathy and progressive neurodegeneration in Parkinson's disease is suggested.
Abstract: Parkinson's disease (PD) is characterized by intracellular inclusions of aggregated and misfolded α-Synuclein (α-Syn), and the loss of dopaminergic (DA) neurons in the brain. The resulting motor abnormalities mark the progression of PD, while non-motor symptoms can already be identified during early, prodromal stages of disease. Recent studies provide evidence that during this early prodromal phase, synaptic and axonal abnormalities occur before the degenerative loss of neuronal cell bodies. These early phenotypes can be attributed to synaptic accumulation of toxic α-Syn. Under physiological conditions, α-Syn functions in its native conformation as a soluble monomer. However, PD patient brains are characterized by intracellular inclusions of insoluble fibrils. Yet, oligomers and protofibrils of α-Syn have been identified to be the most toxic species, with their accumulation at presynaptic terminals affecting several steps of neurotransmitter release. First, high levels of α-Syn alter the size of synaptic vesicle pools and impair their trafficking. Second, α-Syn overexpression can either misregulate or redistribute proteins of the presynaptic SNARE complex. This leads to deficient tethering, docking, priming and fusion of synaptic vesicles at the active zone (AZ). Third, α-Syn inclusions are found within the presynaptic AZ, accompanied by a decrease in AZ protein levels. Furthermore, α-Syn overexpression reduces the endocytic retrieval of synaptic vesicle membranes during vesicle recycling. These presynaptic alterations mediated by accumulation of α-Syn, together impair neurotransmitter exocytosis and neuronal communication. Although α-Syn is expressed throughout the brain and enriched at presynaptic terminals, DA neurons are the most vulnerable in PD, likely because α-Syn directly regulates dopamine levels. Indeed, evidence suggests that α-Syn is a negative modulator of dopamine by inhibiting enzymes responsible for its synthesis. In addition, α-Syn is able to interact with and reduce the activity of VMAT2 and DAT. The resulting dysregulation of dopamine levels directly contributes to the formation of toxic α-Syn oligomers. Together these data suggest a vicious cycle of accumulating α-Syn and deregulated dopamine that triggers synaptic dysfunction and impaired neuronal communication, ultimately causing synaptopathy and progressive neurodegeneration in Parkinson's disease.

234 citations

Journal ArticleDOI
TL;DR: Presynaptic lipid phosphatase synaptojanin is essential for macroautophagy within presynaptic terminals, coupling protein turnover with synaptic vesicle cycling and linking presynptic‐specific autophagy defects to Parkinson's disease.
Abstract: Presynaptic terminals are metabolically active and accrue damage through continuous vesicle cycling. How synapses locally regulate protein homeostasis is poorly understood. We show that the presynaptic lipid phosphatase synaptojanin is required for macroautophagy, and this role is inhibited by the Parkinson's disease mutation R258Q. Synaptojanin drives synaptic endocytosis by dephosphorylating PI(4,5)P2, but this function appears normal in SynaptojaninRQ knock-in flies. Instead, R258Q affects the synaptojanin SAC1 domain that dephosphorylates PI(3)P and PI(3,5)P2, two lipids found in autophagosomal membranes. Using advanced imaging, we show that SynaptojaninRQ mutants accumulate the PI(3)P/PI(3,5)P2-binding protein Atg18a on nascent synaptic autophagosomes, blocking autophagosome maturation at fly synapses and in neurites of human patient induced pluripotent stem cell-derived neurons. Additionally, we observe neurodegeneration, including dopaminergic neuron loss, in SynaptojaninRQ flies. Thus, synaptojanin is essential for macroautophagy within presynaptic terminals, coupling protein turnover with synaptic vesicle cycling and linking presynaptic-specific autophagy defects to Parkinson's disease.

171 citations

Journal ArticleDOI
TL;DR: The current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches.
Abstract: Regeneration refers to regrowth of tissue in the central nervous system It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities Unfortunately, regeneration within the nervous system is very slow compared to other body systems This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches

119 citations