scispace - formally typeset
Search or ask a question
Author

Lourdes Carmona

Other affiliations: University of Edinburgh
Bio: Lourdes Carmona is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Saccharomyces cerevisiae & Citrus × sinensis. The author has an hindex of 12, co-authored 17 publications receiving 651 citations. Previous affiliations of Lourdes Carmona include University of Edinburgh.

Papers
More filters
Journal ArticleDOI
TL;DR: Putative virulence factors in P. expansum were identified by means of a transcriptomic analysis of apple fruits during the course of infection and it was demonstrated that neither patulin nor citrinin are required by P. expandum to successfully infect apples.
Abstract: The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. The genus Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium expansum strains, the main postharvest pathogen of pome fruit, and one Pencillium italicum strain, a postharvest pathogen of citrus fruit, were sequenced and compared with 24 other fungal species. A genomic analysis of gene clusters responsible for the production of secondary metabolites was performed. Putative virulence factors in P. expansum were identified by means of a transcriptomic analysis of apple fruits during the course of infection. Despite a major genome contraction, P. expansum is the Penicillium species with the largest potential for the production of secondary metabolites. Results using knockout mutants clearly demonstrated that neither patulin nor citrinin are required by P. expansum to successfully infect apples. Li et al. ( MPMI-12-14-0398-FI ) reported similar results and conclusions in their recently accepted paper.

179 citations

Journal ArticleDOI
TL;DR: A novel plant carotenoid cleavage activity targeting the 7′,8′ double bond of cyclic C40 carotanoids has been identified and suggested that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration.
Abstract: Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly β-citraurin (3-hydroxyβ-apo-8′-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C 30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of β-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in β-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and β-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7′,8′ double bond in zeaxanthin and β-cryptoxanthin, confirming its role in C 30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7′,8′ double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration.

157 citations

Journal ArticleDOI
TL;DR: The stimulation of carotenoid biosynthesis during storage of ‘Navelina’ orange fruit at 12 °C improve not only peel and pulp coloration, but also pro-vitamin A activity of the flesh, and may then be a postharvest strategy to increase the nutritional and health-related benefits of citrus fruit.

74 citations

Journal ArticleDOI
TL;DR: Results indicated that dihydroflavonol channeling toward anthocyanin production was boosted during the storage at 9°C compared to 4°C, providing more leucoanthocyanidins to enzymes downstream in the pathway.

63 citations

Journal ArticleDOI
TL;DR: It is shown that NO production is increased at the early stages of the transition from vegetative growth to development in Aspergillus nidulans, suggesting a novel role for NR in linking metabolism and development.
Abstract: Nitric oxide (NO) is a signalling molecule involved in many biological processes in bacteria, plants and mammals. However, little is known about the role and biosynthesis of NO in fungi. Here we show that NO production is increased at the early stages of the transition from vegetative growth to development in Aspergillus nidulans. Full NO production requires a functional nitrate reductase (NR) gene (niaD) that is upregulated upon induction of conidiation, even under N-repressing conditions in the presence of ammonium. At this stage, NO homeostasis is achieved by balancing biosynthesis (NR) and catabolism (flavohaemoglobins). niaD and flavohaemoglobin fhbA are transiently upregulated upon induction of conidiation, and both regulators AreA and NirA are necessary for this transcriptional response. The second flavohaemoglobin gene fhbB shows a different expression profile being moderately expressed during the early stages of the transition phase from vegetative growth to conidiation, but it is strongly induced 24 h later. NO levels influence the balance between conidiation and sexual reproduction because artificial strong elevation of NO levels reduced conidiation and induced the formation of cleistothecia. The nitrate-independent and nitrogen metabolite repression-insensitive transcriptional upregulation of niaD during conidiation suggests a novel role for NR in linking metabolism and development.

50 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotENoid metabolism, biotechnology, and nutritional and health benefits.

555 citations

Journal ArticleDOI
Ronald P. de Vries1, Robert Riley2, Ad Wiebenga1, Guillermo Aguilar-Osorio3, Sotiris Amillis4, Cristiane Uchima, Gregor Anderluh, Mojtaba Asadollahi5, Marion Askin6, Marion Askin7, Kerrie Barry2, Evy Battaglia1, Özgür Bayram8, Özgür Bayram9, Tiziano Benocci1, Susanna A. Braus-Stromeyer9, Camila Caldana, David Cánovas10, David Cánovas11, Gustavo C. Cerqueira12, Fusheng Chen13, Wanping Chen13, Cindy Choi2, Alicia Clum2, Renato Augusto Corrêa dos Santos, André Damasio14, George Diallinas4, Tamás Emri5, Erzsébet Fekete5, Michel Flipphi5, Susanne Freyberg9, Antonia Gallo15, Christos Gournas16, Rob Habgood17, Matthieu Hainaut18, María Harispe19, Bernard Henrissat18, Bernard Henrissat20, Bernard Henrissat21, Kristiina Hildén22, Ryan Hope17, Abeer Hossain23, Eugenia Karabika24, Eugenia Karabika25, Levente Karaffa5, Zsolt Karányi5, Nada Kraševec, Alan Kuo2, Harald Kusch9, Kurt LaButti2, Ellen Lagendijk7, Alla Lapidus2, Alla Lapidus26, Anthony Levasseur18, Erika Lindquist2, Anna Lipzen2, Antonio F. Logrieco15, Andrew MacCabe27, Miia R. Mäkelä22, Iran Malavazi28, Petter Melin29, Vera Meyer30, Natalia Mielnichuk31, Natalia Mielnichuk10, Márton Miskei5, Ákos Molnár5, Giuseppina Mulè15, Chew Yee Ngan2, Margarita Orejas27, Erzsébet Orosz1, Erzsébet Orosz5, Jean Paul Ouedraogo7, Jean Paul Ouedraogo32, Karin M. Overkamp, Hee-Soo Park33, Giancarlo Perrone15, François Piumi20, François Piumi18, Peter J. Punt7, Arthur F. J. Ram7, Ana Ramón34, Stefan Rauscher35, Eric Record18, Diego Mauricio Riaño-Pachón, Vincent Robert1, Julian Röhrig35, Roberto Ruller, Asaf Salamov2, Nadhira Salih36, Nadhira Salih17, Rob Samson1, Erzsébet Sándor5, Manuel Sanguinetti34, Tabea Schütze30, Tabea Schütze7, Kristina Sepčić37, Ekaterina Shelest38, Gavin Sherlock39, Vicky Sophianopoulou, Fabio M. Squina, Hui Sun2, Antonia Susca15, Richard B. Todd40, Adrian Tsang32, Shiela E. Unkles25, Nathalie van de Wiele1, Diana van Rossen-Uffink7, Juliana Velasco de Castro Oliveira, Tammi Camilla Vesth41, Jaap Visser1, Jae-Hyuk Yu42, Miaomiao Zhou1, Mikael Rørdam Andersen41, David B. Archer17, Scott E. Baker43, Isabelle Benoit1, Isabelle Benoit32, Axel A. Brakhage44, Gerhard H. Braus9, Reinhard Fischer35, Jens Christian Frisvad41, Gustavo H. Goldman45, Jos Houbraken1, Berl R. Oakley46, István Pócsi5, Claudio Scazzocchio47, Claudio Scazzocchio48, Bernhard Seiboth49, Patricia A. vanKuyk1, Patricia A. vanKuyk7, Jennifer R. Wortman12, Paul S. Dyer17, Igor V. Grigoriev2 
Utrecht University1, United States Department of Energy2, National Autonomous University of Mexico3, National and Kapodistrian University of Athens4, University of Debrecen5, Commonwealth Scientific and Industrial Research Organisation6, Leiden University7, Maynooth University8, University of Göttingen9, University of Seville10, University of Natural Resources and Life Sciences, Vienna11, Broad Institute12, Huazhong Agricultural University13, State University of Campinas14, International Sleep Products Association15, Université libre de Bruxelles16, University of Nottingham17, Aix-Marseille University18, Pasteur Institute19, Institut national de la recherche agronomique20, King Abdulaziz University21, University of Helsinki22, University of Amsterdam23, University of Ioannina24, University of St Andrews25, Saint Petersburg State University26, Spanish National Research Council27, Federal University of São Carlos28, Swedish University of Agricultural Sciences29, Technical University of Berlin30, National Scientific and Technical Research Council31, Concordia University32, Kyungpook National University33, University of the Republic34, Karlsruhe Institute of Technology35, University of Sulaymaniyah36, University of Ljubljana37, Leibniz Association38, Stanford University39, Kansas State University40, Technical University of Denmark41, University of Wisconsin-Madison42, Pacific Northwest National Laboratory43, University of Jena44, University of São Paulo45, University of Kansas46, Université Paris-Saclay47, Imperial College London48, Vienna University of Technology49
TL;DR: In this article, a comparative genomics and experimental study of the aspergilli genus is presented, which allows for the first time a genus-wide view of the biological diversity of the Aspergillus and in many, but not all, cases linked genome differences to phenotype.
Abstract: Background: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. Results: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. Conclusions: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.

349 citations

Journal ArticleDOI
TL;DR: An overview of carotenoid biosynthesis, degradation, and accumulation in horticultural crops is provided and recent achievements in the understanding of carOTenoid metabolic regulation in vegetables, fruits, and flowers are highlighted.
Abstract: Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegetables. Not only do carotenoids give horticultural crops their visual appeal, they also enhance nutritional value and health benefits for humans. As a result, carotenoid research in horticultural crops has grown exponentially over the last decade. These investigations have advanced our fundamental understanding of carotenoid metabolism and regulation in plants. In this review, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in horticultural crops and highlight recent achievements in our understanding of carotenoid metabolic regulation in vegetables, fruits, and flowers.

346 citations

Journal ArticleDOI
TL;DR: How NR may play a central role in plant biology by controlling the amounts of NO, a key signaling molecule in plant cells, is reviewed.

274 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent advances in AMPs development with respect to characteristics, structure‐activity relationships, functions, antimicrobial mechanisms, expression regulation, and applications in food, medicine, and animals.
Abstract: Antimicrobial peptides (AMPs), critical components of the innate immune system, are widely distributed throughout the animal and plant kingdoms. They can protect against a broad array of infection-causing agents, such as bacteria, fungi, parasites, viruses, and tumor cells, and also exhibit immunomodulatory activity. AMPs exert antimicrobial activities primarily through mechanisms involving membrane disruption, so they have a lower likelihood of inducing drug resistance. Extensive studies on the structure-activity relationship have revealed that net charge, hydrophobicity, and amphipathicity are the most important physicochemical and structural determinants endowing AMPs with antimicrobial potency and cell selectivity. This review summarizes the recent advances in AMPs development with respect to characteristics, structure-activity relationships, functions, antimicrobial mechanisms, expression regulation, and applications in food, medicine, and animals.

259 citations