scispace - formally typeset
Search or ask a question
Author

Lourdes Rodríguez Schettino

Bio: Lourdes Rodríguez Schettino is an academic researcher. The author has contributed to research in topics: Anolis & Population bottleneck. The author has an hindex of 8, co-authored 13 publications receiving 1630 citations.

Papers
More filters
Journal ArticleDOI
09 Sep 2004-Nature
TL;DR: It is shown that one key to invasion success may be the occurrence of multiple introductions that transform among- population variation in native ranges to within-population variation in introduced areas.
Abstract: A genetic paradox1,2 exists in invasion biology: how do introduced populations, whose genetic variation has probably been depleted by population bottlenecks, persist and adapt to new conditions? Lessons from conservation genetics show that reduced genetic variation due to genetic drift and founder effects limits the ability of a population to adapt, and small population size increases the risk of extinction1,3,4. Nonetheless, many introduced species experiencing these same conditions during initial introductions persist, expand their ranges, evolve rapidly and become invasive. To address this issue, we studied the brown anole, a worldwide invasive lizard. Genetic analyses indicate that at least eight introductions have occurred in Florida from across this lizard's native range, blending genetic variation from different geographic source populations and producing populations that contain substantially more, not less, genetic variation than native populations. Moreover, recently introduced brown anole populations around the world originate from Florida, and some have maintained these elevated levels of genetic variation. Here we show that one key to invasion success may be the occurrence of multiple introductions that transform among-population variation in native ranges to within-population variation in introduced areas. Furthermore, these genetically variable populations may be particularly potent sources for introductions elsewhere. The growing problem of invasive species introductions brings considerable economic and biological costs5,6. If these costs are to be mitigated, a greater understanding of the causes, progression and consequences of biological invasions is needed7.

1,014 citations

Journal ArticleDOI
31 Jul 2003-Nature
TL;DR: It is found that evolutionary divergence overcomes niche conservatism: closely relatedspecies are no more ecologically similar than expected by random divergence and some distantly related species are Ecologically similar, leading to a community in which the relationship between ecological similarity and phylogenetic relatedness is very weak.
Abstract: Niche conservatism--the tendency for closely related species to be ecologically similar--is widespread. However, most studies compare closely related taxa that occur in allopatry; in sympatry, the stabilizing forces that promote niche conservatism, and thus inhibit niche shifts, may be countered by natural selection favouring ecological divergence to minimize the intensity of interspecific interactions. Consequently, the relative importance of niche conservatism versus niche divergence in determining community structure has received little attention. Here, we examine a tropical lizard community in which species have a long evolutionary history of ecological interaction. We find that evolutionary divergence overcomes niche conservatism: closely related species are no more ecologically similar than expected by random divergence and some distantly related species are ecologically similar, leading to a community in which the relationship between ecological similarity and phylogenetic relatedness is very weak. Despite this lack of niche conservatism, the ecological structuring of the community has a phylogenetic component: niche complementarity only occurs among distantly related species, which suggests that the strength of ecological interactions among species may be related to phylogeny, but it is not necessarily the most closely related species that interact most strongly.

322 citations

Journal ArticleDOI
TL;DR: It is proposed that introductions follow a sequential, two‐step process involving a reduction in genetic variation due to founder effects and population bottlenecks followed by an increase in Genetic variation if admixture of individuals from multiple native‐range sources occurs.
Abstract: Invasive species are classically thought to suffer from reduced within-population genetic variation compared to their native-range sources due to founder effects and population bottlenecks during introduc- tion. Reduction in genetic variation in introduced species may limit population growth, increase the risk of extinction, and constrain adaptation, hindering the successful establishment and spread of an alien species. Results of recent empirical studies, however, show higher than expected genetic variation, rapid evolution, and multiple native-range sources in introduced populations, which challenge the classical scenario of invasive- species genetics. With mitochondrial DNA (mtDNA) sequence data, we examined the molecular genetics of 10 replicate introductions of 8 species of Anolis lizards. Eighty percent of introductions to Florida and the Domini- can Republic were from multiple native-range source populations. MtDNA haplotypes restricted to different geographically distinct populations in the native range of a species commonly occurred as intrapopulation polymorphisms in introduced populations. Two-thirds of introduced populations had two or more sources, and admixture elevated genetic variation in half of the introduced populations above levels typical of native-range populations. The mean pairwise sequence divergence among haplotypes sampled within introduced popula- tions was nearly twice that within native-range populations (2.6% vs. 1.4%). The dynamics of introductions from multiple sources and admixture explained the observed genetic contrasts between native and introduced Anolis populations better than the classical scenario for most introduced populations. Elevated genetic vari- ation through admixture occurred regardless of the mode or circumstances of an introduction. Little insight into the number of sources or amount of genetic variation in introduced populations was gained by knowing the number of physical introductions, the size of a species' non-native range, or whether it was a deliberate or accidental introduction. We hypothesize that elevated genetic variation through admixture of multiple sources is more common in biological invasions than previously thought. We propose that introductions follow a sequential, two-step process involving a reduction in genetic variation due to founder effects and population bottlenecks followed by an increase in genetic variation if admixture of individuals from multiple native-range sources occurs.

168 citations

Journal ArticleDOI
TL;DR: Analysis of morphology, mitochondrial DNA and nuclear DNA in the Cuban green anoles (carolinensis subgroup) strongly supports the hypothesis that Miocene fragmentation of Cuba into three palaeo–archipelagos accompanied species–level divergence in the adaptive radiation of West Indian Anolis lizards.
Abstract: Sympatric speciation is often proposed to account for species-rich adaptive radiations within lakes or islands, where barriers to gene flow or dispersal may be lacking. However, allopatric speciation may also occur in such situations, especially when ranges are fragmented by fluctuating water levels. We test the hypothesis that Miocene fragmentation of Cuba into three palaeo-archipelagos accompanied species-level divergence in the adaptive radiation of West Indian Anolis lizards. Analysis of morphology, mitochondrial DNA (mt DNA) and nuclear DNA in the Cuban green anoles (carolinensis subgroup) strongly supports three predictions made by this hypothesis. First, three geographical sets of populations, whose ranges correspond with palaeo-archipelago boundaries, are distinct and warrant recognition as independent evolutionary lineages or species. Coalescence of nuclear sequence fragments sampled from these species and the large divergences observed between their mtDNA haplotypes suggest separation prior to the subsequent unification of Cuba ca. 5 Myr ago. Second, molecular phylogenetic relationships among these species reflect historical geographical relationships rather than morphological similarity. Third, all three species remain distinct despite extensive geographical contact subsequent to island unification, occasional hybridization and introgression of mtDNA haplotypes. Allopatric speciation initiated during partial island submergence may play an important role in speciation during the adaptive radiation of Anolis lizards.

107 citations

Journal ArticleDOI
TL;DR: Variation among ecomorphs indicates that foraging behaviour is related to habitat use, although the specific environmental factors driving foraging divergence are unclear.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that both BEST and the new Bayesian Markov chain Monte Carlo method for the multispecies coalescent have much better estimation accuracy for species tree topology than concatenation, and the method outperforms BEST in divergence time and population size estimation.
Abstract: Until recently, it has been common practice for a phylogenetic analysis to use a single gene sequence from a single individual organism as a proxy for an entire species. With technological advances, it is now becoming more common to collect data sets containing multiple gene loci and multiple individuals per species. These data sets often reveal the need to directly model intraspecies polymorphism and incomplete lineage sorting in phylogenetic estimation procedures. For a single species, coalescent theory is widely used in contemporary population genetics to model intraspecific gene trees. Here, we present a Bayesian Markov chain Monte Carlo method for the multispecies coalescent. Our method coestimates multiple gene trees embedded in a shared species tree along with the effective population size of both extant and ancestral species. The inference is made possible by multilocus data from multiple individuals per species. Using a multiindividual data set and a series of simulations of rapid species radiations, we demonstrate the efficacy of our new method. These simulations give some insight into the behavior of the method as a function of sampled individuals, sampled loci, and sequence length. Finally, we compare our new method to both an existing method (BEST 2.2) with similar goals and the supermatrix (concatenation) method. We demonstrate that both BEST and our method have much better estimation accuracy for species tree topology than concatenation, and our method outperforms BEST in divergence time and population size estimation.

2,401 citations

Journal ArticleDOI
TL;DR: Propagule pressure is proposed as a key element to understanding why some introduced populations fail to establish whereas others succeed and how the study of propagule pressure can provide an opportunity to tie together disparate research agendas within invasion ecology.
Abstract: Human-mediated species invasions are a significant component of current global environmental change. There is every indication that the rate at which locations are accumulating non-native species is accelerating as free trade and globalization advance. Thus, the need to incorporate predictive models in the assessment of invasion risk has become acute. However, finding elements of the invasion process that provide consistent explanatory power has proved elusive. Here, we propose propagule pressure as a key element to understanding why some introduced populations fail to establish whereas others succeed. In the process, we illustrate how the study of propagule pressure can provide an opportunity to tie together disparate research agendas within invasion ecology.

2,288 citations

Journal ArticleDOI
TL;DR: This work describes how niche conservatism in climatic tolerances may limit geographic range expansion and how this one type of niche conservatism may be important in allopatric speciation and the spread of invasive, human-introduced species.
Abstract: ▪ Abstract Niche conservatism is the tendency of species to retain ancestral ecological characteristics. In the recent literature, a debate has emerged as to whether niches are conserved. We suggest that simply testing whether niches are conserved is not by itself particularly helpful or interesting and that a more useful focus is on the patterns that niche conservatism may (or may not) create. We focus specifically on how niche conservatism in climatic tolerances may limit geographic range expansion and how this one type of niche conservatism may be important in (a) allopatric speciation, (b) historical biogeography, (c) patterns of species richness, (d) community structure, (e) the spread of invasive, human-introduced species, (f) responses of species to global climate change, and (g) human history, from 13,000 years ago to the present. We describe how these effects of niche conservatism can be examined with new tools for ecological niche modeling.

2,039 citations

Journal ArticleDOI
TL;DR: Several key areas are reviewed in which phylogenetic information helps to resolve long-standing controversies in community ecology, challenges previous assumptions, and opens new areas of investigation.
Abstract: The increasing availability of phylogenetic data, computing power and informatics tools has facilitated a rapid expansion of studies that apply phylogenetic data and methods to community ecology. Several key areas are reviewed in which phylogenetic information helps to resolve long-standing controversies in community ecology, challenges previous assumptions, and opens new areas of investigation. In particular, studies in phylogenetic community ecology have helped to reveal the multitude of processes driving community assembly and have demonstrated the importance of evolution in the assembly process. Phylogenetic approaches have also increased understanding of the consequences of community interactions for speciation, adaptation and extinction. Finally, phylogenetic community structure and composition holds promise for predicting ecosystem processes and impacts of global change. Major challenges to advancing these areas remain. In particular, determining the extent to which ecologically relevant traits are phylogenetically conserved or convergent, and over what temporal scale, is critical to understanding the causes of community phylogenetic structure and its evolutionary and ecosystem consequences. Harnessing phylogenetic information to understand and forecast changes in diversity and dynamics of communities is a critical step in managing and restoring the Earths biota in a time of rapid global change.

1,867 citations

Journal ArticleDOI
TL;DR: It is concluded that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.
Abstract: Invasive species are predicted to suffer from reductions in genetic diversity during founding events, reducing adaptive potential. Integrating evidence from two literature reviews and two case studies, we address the following questions: How much genetic diversity is lost in invasions? Do multiple introductions ameliorate this loss? Is there evidence for loss of diversity in quantitative traits? Do invaders that have experienced strong bottlenecks show adaptive evolution? How do multiple introductions influence adaptation on a landscape scale? We reviewed studies of 80 species of animals, plants, and fungi that quantified nuclear molecular diversity within introduced and source populations. Overall, there were significant losses of both allelic richness and heterozygosity in introduced populations, and large gains in diversity were rare. Evidence for multiple introductions was associated with increased diversity, and allelic variation appeared to increase over long timescales (~100 years), suggesting a role for gene flow in augmenting diversity over the long-term. We then reviewed the literature on quantitative trait diversity and found that broad-sense variation rarely declines in introductions, but direct comparisons of additive variance were lacking. Our studies of Hypericum canariense invasions illustrate how populations with diminished diversity may still evolve rapidly. Given the prevalence of genetic bottlenecks in successful invading populations and the potential for adaptive evolution in quantitative traits, we suggest that the disadvantages associated with founding events may have been overstated. However, our work on the successful invader Verbascum thapsus illustrates how multiple introductions may take time to commingle, instead persisting as a 'mosaic of maladaptation' where traits are not distributed in a pattern consistent with adaptation. We conclude that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.

1,588 citations