scispace - formally typeset
Search or ask a question
Author

Louzhen Fan

Bio: Louzhen Fan is an academic researcher from Beijing Normal University. The author has contributed to research in topics: Light-emitting diode & Electroluminescence. The author has an hindex of 5, co-authored 6 publications receiving 1686 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates multicolored narrow bandwidth emission from triangular CQDs with a quantum yield up to 54–72% and synthesizes these dots showing tunable emission color, high fluorescence and a narrow FWHM of only 30 nanometers, which will set the stage for developing next-generation high-performance C QDs-based light-emitting diodes.
Abstract: Carbon quantum dots (CQDs) have emerged as promising materials for optoelectronic applications on account of carbon’s intrinsic merits of high stability, low cost, and environment-friendliness. However, the CQDs usually give broad emission with full width at half maximum exceeding 80 nm, which fundamentally limit their display applications. Here we demonstrate multicolored narrow bandwidth emission (full width at half maximum of 30 nm) from triangular CQDs with a quantum yield up to 54–72%. Detailed structural and optical characterizations together with theoretical calculations reveal that the molecular purity and crystalline perfection of the triangular CQDs are key to the high color-purity. Moreover, multicolored light-emitting diodes based on these CQDs display good stability, high color-purity, and high-performance with maximum luminance of 1882–4762 cd m−2 and current efficiency of 1.22–5.11 cd A−1. This work will set the stage for developing next-generation high-performance CQDs-based light-emitting diodes.

592 citations

Journal ArticleDOI
TL;DR: In this paper, a multicolor bandgap fluorescent carbon quantum dots (MCBF-CQDs) from blue to red with quantum yield up to 75% were synthesized using a solvothermal method.
Abstract: Multicolor bandgap fluorescent carbon quantum dots (MCBF-CQDs) from blue to red with quantum yield up to 75% are synthesized using a solvothermal method. For the first time, monochrome electroluminescent light-emitting diodes (LEDs) with MCBF-CQDs directly as an active emission layer are fabricated. The maximum luminance of blue LEDs reaches 136 cd m-2 , which is the best performance for CQD-based monochrome electroluminescent LEDs.

569 citations

Journal ArticleDOI
TL;DR: An ultraviolet (UV)-pumped CQD phosphors-based warm white light-emitting diode (WLED) is realized for the first time and achieves a color rendering index of 97.
Abstract: Red emissive carbon quantum dots (R-CQDs) with quantum yield of 53% is successfully prepared. An ultraviolet (UV)-pumped CQD phosphors-based warm white light-emitting diode (WLED) is realized for the first time and achieves a color rendering index of 97. This work provides a new avenue for the exploration of low cost, environment-friendly, and high-performance CQD phosphors-based warm WLEDs.

564 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the latest researches on the synthesis, structure, optical and electronic properties of CDs as well as their advanced applications in biomedicine and optoelectronics.

515 citations

Journal ArticleDOI
TL;DR: A new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye is reported, demonstrating their great potential as a dual probe of pH and temperature in complicated environments such as biological media.
Abstract: Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed from the lactone structures under strong alkaline conditions. The fluorescence of the resulting graphene quantum dots was also found to be responsive to the temperature changes, demonstrating their great potential as a dual probe of pH and temperature in complicated environments such as biological media.

172 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Carbon dots have received an increasing amount of attention because of their significant advantages in terms of low toxicity, chemical inertness, tunable fluorescence, good water solubility, and physicochemical properties as mentioned in this paper.

731 citations

Journal ArticleDOI
TL;DR: CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties, and critical insights into facilitating their potential in various application fields are proposed.
Abstract: Despite the various synthesis methods to obtain carbon dots (CDs), the bottom-up methods are still the most widely administrated route to afford large-scale and low-cost synthesis. However, as CDs are developed with increasing reports involved in producing many CDs, the structure and property features have changed enormously compared with the first generation of CDs, raising classification concerns. To this end, a new classification of CDs, named carbonized polymer dots (CPDs), is summarized according to the analysis of structure and property features. Here, CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties. Furthermore, deep insights into the effects of synthesis on the structure/property features of CDs are provided. Herein, the synthesis methods of CDs are also summarized in detail, and the effects of synthesis conditions of the bottom-up methods in terms of the structures and properties of CPDs are discussed and analyzed comprehensively. Insights into formation process and nucleation mechanism of CPDs are also offered. Finally, a perspective of the future development of CDs is proposed with critical insights into facilitating their potential in various application fields.

631 citations

Journal ArticleDOI
TL;DR: This work demonstrates multicolored narrow bandwidth emission from triangular CQDs with a quantum yield up to 54–72% and synthesizes these dots showing tunable emission color, high fluorescence and a narrow FWHM of only 30 nanometers, which will set the stage for developing next-generation high-performance C QDs-based light-emitting diodes.
Abstract: Carbon quantum dots (CQDs) have emerged as promising materials for optoelectronic applications on account of carbon’s intrinsic merits of high stability, low cost, and environment-friendliness. However, the CQDs usually give broad emission with full width at half maximum exceeding 80 nm, which fundamentally limit their display applications. Here we demonstrate multicolored narrow bandwidth emission (full width at half maximum of 30 nm) from triangular CQDs with a quantum yield up to 54–72%. Detailed structural and optical characterizations together with theoretical calculations reveal that the molecular purity and crystalline perfection of the triangular CQDs are key to the high color-purity. Moreover, multicolored light-emitting diodes based on these CQDs display good stability, high color-purity, and high-performance with maximum luminance of 1882–4762 cd m−2 and current efficiency of 1.22–5.11 cd A−1. This work will set the stage for developing next-generation high-performance CQDs-based light-emitting diodes.

592 citations

Journal ArticleDOI
TL;DR: In this paper, a multicolor bandgap fluorescent carbon quantum dots (MCBF-CQDs) from blue to red with quantum yield up to 75% were synthesized using a solvothermal method.
Abstract: Multicolor bandgap fluorescent carbon quantum dots (MCBF-CQDs) from blue to red with quantum yield up to 75% are synthesized using a solvothermal method. For the first time, monochrome electroluminescent light-emitting diodes (LEDs) with MCBF-CQDs directly as an active emission layer are fabricated. The maximum luminance of blue LEDs reaches 136 cd m-2 , which is the best performance for CQD-based monochrome electroluminescent LEDs.

569 citations

Journal ArticleDOI
TL;DR: An ultraviolet (UV)-pumped CQD phosphors-based warm white light-emitting diode (WLED) is realized for the first time and achieves a color rendering index of 97.
Abstract: Red emissive carbon quantum dots (R-CQDs) with quantum yield of 53% is successfully prepared. An ultraviolet (UV)-pumped CQD phosphors-based warm white light-emitting diode (WLED) is realized for the first time and achieves a color rendering index of 97. This work provides a new avenue for the exploration of low cost, environment-friendly, and high-performance CQD phosphors-based warm WLEDs.

564 citations