scispace - formally typeset
Search or ask a question
Author

Lovisa Waldner

Bio: Lovisa Waldner is an academic researcher from Lund University. The author has contributed to research in topics: Optically stimulated luminescence & Pellets. The author has an hindex of 3, co-authored 8 publications receiving 20 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In 2019, a field test with the purpose of evaluating retrospective dosimetry methods as carried out in potential real-life exposure scenarios was organized by the EURADOS Working Group 10 and RENEB as discussed by the authors, where a 1.36 TBq 192Ir source was used to irradiate anthropomorphic phantoms in different geometries at doses of several Gy.
Abstract: With the use of ionizing radiation comes the risk of accidents and malevolent misuse. When unplanned exposures occur, there are several methods which can be used to retrospectively reconstruct individual radiation exposures; biological methods include analysis of aberrations and damage of chromosomes and DNA, while physical methods rely on luminescence (TL/OSL) or EPR signals. To ensure the quality and dependability of these methods, they should be evaluated under realistic exposure conditions. In 2019, EURADOS Working Group 10 and RENEB organized a field test with the purpose of evaluating retrospective dosimetry methods as carried out in potential real-life exposure scenarios. A 1.36 TBq 192Ir source was used to irradiate anthropomorphic phantoms in different geometries at doses of several Gy in an outdoor open-air geometry. Materials intended for accident dosimetry (including mobile phones and blood) were placed on the phantoms together with reference dosimeters (LiF, NaCl, glass). The objective was to estimate radiation exposures received by individuals as measured using blood and fortuitous materials, and to evaluate these methods by comparing the estimated doses to reference measurements and Monte Carlo simulations. Herein we describe the overall planning, goals, execution and preliminary outcomes of the 2019 field test. Such field tests are essential for the development of new and existing methods. The outputs from this field test include useful experience in terms of planning and execution of future exercises, with respect to time management, radiation protection, and reference dosimetry to be considered to obtain relevant data for analysis.

17 citations

Journal ArticleDOI
TL;DR: In this article, the dicentric chromosome assay (DCA) results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ± 0.5 Gy of the reference).
Abstract: PURPOSE Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.

17 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the results of the 2019 RENEB (Running the European Network of Biodosimetry) 2019 exercise where four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries.
Abstract: Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5–40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5–8 h varying exposure times; second: varying dose rates of 0.5–8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.

17 citations

Journal ArticleDOI
TL;DR: In this article, NaCl pellets are produced from ordinary household salt using simple and accessible methods, for the purpose of suggesting a cost-effective and available tool for various optically stimulated luminescence dosimetry applications.

9 citations

Journal ArticleDOI
TL;DR: The results of this study show that the use of NaCl pellets for prospective dosimetry is a promising, cost-effective, and accessible complement to commercially available alternatives for accurate absorbed dose determinations.
Abstract: Optically stimulated luminescence (OSL) signal properties of pellets from three types of NaCl (two household salts and one analytical grade salt) were investigated for their use in prospective dosimetry. Special attention was given to the OSL signal behaviour with time. The readout protocol was optimised in terms of preheat temperature, and the OSL signal yield of the NaCl pellet with time as well as the fading of the OSL signal with time was investigated. The effects of acute and chronic irradiations were compared. Irradiations and readout were performed using a Riso TL/OSL reader (TL/OSL-DA-15, DTU Nutech, Denmark). The optimal preheat temperature was determined to be 100 oC, yielding OSL signals similar to a 1 h pause before OSL signal readout. There was no OSL signal fading observed as a function of time, but a decrease in the OSL signal yield of the NaCl pellets with time resulted in an apparent inverse fading when converting the OSL signal to an absorbed dose. For chronic radiation exposures of up to five weeks, the sensitivity of the NaCl pellets was found to be stable. The results of this study show that the use of NaCl pellets for prospective dosimetry is a promising, cost-effective, and accessible complement to commercially available alternatives for accurate absorbed dose determinations.

6 citations


Cited by
More filters
Journal Article
Y.X. Wang, Z.Y. Pan, Y.K Ho, Yadong Xu, Aijun Du 
TL;DR: In this article, the impact-induced deposition of Al13 clusters with icosahedral structure on Ni(0 0 1) surface was studied by molecular dynamics (MD) simulation using Finnis-Sinclair potentials.
Abstract: The impact-induced deposition of Al13 clusters with icosahedral structure on Ni(0 0 1) surface was studied by molecular dynamics (MD) simulation using Finnis–Sinclair potentials. The incident kinetic energy (Ein) ranged from 0.01 to 30 eV per atom. The structural and dynamical properties of Al clusters on Ni surfaces were found to be strongly dependent on the impact energy. At much lower energy, the Al cluster deposited on the surface as a bulk molecule. However, the original icosahedral structure was transformed to the fcc-like one due to the interaction and the structure mismatch between the Al cluster and Ni surface. With increasing the impinging energy, the cluster was deformed severely when it contacted the substrate, and then broken up due to dense collision cascade. The cluster atoms spread on the surface at last. When the impact energy was higher than 11 eV, the defects, such as Al substitutions and Ni ejections, were observed. The simulation indicated that there exists an optimum energy range, which is suitable for Al epitaxial growth in layer by layer. In addition, at higher impinging energy, the atomic exchange between Al and Ni atoms will be favourable to surface alloying.

289 citations

Journal ArticleDOI
TL;DR: In 2019, a field test with the purpose of evaluating retrospective dosimetry methods as carried out in potential real-life exposure scenarios was organized by the EURADOS Working Group 10 and RENEB as discussed by the authors, where a 1.36 TBq 192Ir source was used to irradiate anthropomorphic phantoms in different geometries at doses of several Gy.
Abstract: With the use of ionizing radiation comes the risk of accidents and malevolent misuse. When unplanned exposures occur, there are several methods which can be used to retrospectively reconstruct individual radiation exposures; biological methods include analysis of aberrations and damage of chromosomes and DNA, while physical methods rely on luminescence (TL/OSL) or EPR signals. To ensure the quality and dependability of these methods, they should be evaluated under realistic exposure conditions. In 2019, EURADOS Working Group 10 and RENEB organized a field test with the purpose of evaluating retrospective dosimetry methods as carried out in potential real-life exposure scenarios. A 1.36 TBq 192Ir source was used to irradiate anthropomorphic phantoms in different geometries at doses of several Gy in an outdoor open-air geometry. Materials intended for accident dosimetry (including mobile phones and blood) were placed on the phantoms together with reference dosimeters (LiF, NaCl, glass). The objective was to estimate radiation exposures received by individuals as measured using blood and fortuitous materials, and to evaluate these methods by comparing the estimated doses to reference measurements and Monte Carlo simulations. Herein we describe the overall planning, goals, execution and preliminary outcomes of the 2019 field test. Such field tests are essential for the development of new and existing methods. The outputs from this field test include useful experience in terms of planning and execution of future exercises, with respect to time management, radiation protection, and reference dosimetry to be considered to obtain relevant data for analysis.

17 citations

Journal ArticleDOI
TL;DR: In this article, the dicentric chromosome assay (DCA) results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ± 0.5 Gy of the reference).
Abstract: PURPOSE Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.

17 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the results of the 2019 RENEB (Running the European Network of Biodosimetry) 2019 exercise where four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries.
Abstract: Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5–40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5–8 h varying exposure times; second: varying dose rates of 0.5–8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.

17 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the resistance heating Czochralski method to grow NaCl:Ce3+ (4f↔5d) doped crystals and analyzed their structural, mechanically, thermally, and optically properties.

12 citations