scispace - formally typeset
Search or ask a question
Author

Lu Shen

Bio: Lu Shen is an academic researcher from Beth Israel Deaconess Medical Center. The author has contributed to research in topics: Electronic health record & Computer science. The author has an hindex of 2, co-authored 2 publications receiving 4760 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The Medical Information Mart for Intensive Care (MIMIC-III) as discussed by the authors is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital.
Abstract: MIMIC-III ('Medical Information Mart for Intensive Care') is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital. Data includes vital signs, medications, laboratory measurements, observations and notes charted by care providers, fluid balance, procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and more. The database supports applications including academic and industrial research, quality improvement initiatives, and higher education coursework.

4,056 citations

Journal Article
TL;DR: MIMIC-III (‘Medical Information Mart for Intensive Care’) is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital.
Abstract: MIMIC-III ('Medical Information Mart for Intensive Care') is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital. Data includes vital signs, medications, laboratory measurements, observations and notes charted by care providers, fluid balance, procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and more. The database supports applications including academic and industrial research, quality improvement initiatives, and higher education coursework.

3,543 citations

Journal ArticleDOI
TL;DR: MIMIC-IV as mentioned in this paper is a publicly available database sourced from the electronic health record of the Beth Israel Deaconess Medical Center, which contains valuable information on the care of patients and their response to treatments, offering exciting opportunities for research.
Abstract: Abstract Digital data collection during routine clinical practice is now ubiquitous within hospitals. The data contains valuable information on the care of patients and their response to treatments, offering exciting opportunities for research. Typically, data are stored within archival systems that are not intended to support research. These systems are often inaccessible to researchers and structured for optimal storage, rather than interpretability and analysis. Here we present MIMIC-IV, a publicly available database sourced from the electronic health record of the Beth Israel Deaconess Medical Center. Information available includes patient measurements, orders, diagnoses, procedures, treatments, and deidentified free-text clinical notes. MIMIC-IV is intended to support a wide array of research studies and educational material, helping to reduce barriers to conducting clinical research.

57 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: How these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems are described.
Abstract: Here we present deep-learning techniques for healthcare, centering our discussion on deep learning in computer vision, natural language processing, reinforcement learning, and generalized methods. We describe how these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems. Our discussion of computer vision focuses largely on medical imaging, and we describe the application of natural language processing to domains such as electronic health record data. Similarly, reinforcement learning is discussed in the context of robotic-assisted surgery, and generalized deep-learning methods for genomics are reviewed.

1,843 citations

Journal ArticleDOI
08 May 2018
TL;DR: A representation of patients’ entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format is proposed, and it is demonstrated that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization.
Abstract: Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient’s record. We propose a representation of patients’ entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93–0.94), 30-day unplanned readmission (AUROC 0.75–0.76), prolonged length of stay (AUROC 0.85–0.86), and all of a patient’s final discharge diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases. We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the patient’s chart.

1,388 citations

Journal ArticleDOI
TL;DR: In this article, a deep learning model based on Gated Recurrent Unit (GRU) is proposed to exploit the missing values and their missing patterns for effective imputation and improving prediction performance.
Abstract: Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provide useful insights for better understanding and utilization of missing values in time series analysis.

1,085 citations

Book ChapterDOI
01 Dec 2018
TL;DR: Preliminary performance data on a subset of TPC-H is presented and it is shown that the system the team is building, C-Store, is substantially faster than popular commercial products.
Abstract: This paper presents the design of a read-optimized relational DBMS that contrasts sharply with most current systems, which are write-optimized. Among the many differences in its design are: storage of data by column rather than by row, careful coding and packing of objects into storage including main memory during query processing, storing an overlapping collection of column-oriented projections, rather than the current fare of tables and indexes, a non-traditional implementation of transactions which includes high availability and snapshot isolation for read-only transactions, and the extensive use of bitmap indexes to complement B-tree structures.We present preliminary performance data on a subset of TPC-H and show that the system we are building, C-Store, is substantially faster than popular commercial products. Hence, the architecture looks very encouraging.

1,063 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a representation of patients' entire, raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format and demonstrated that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization.
Abstract: Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient's record. We propose a representation of patients' entire, raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two U.S. academic medical centers with 216,221 adult patients hospitalized for at least 24 hours. In the sequential format we propose, this volume of EHR data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for tasks such as predicting in-hospital mortality (AUROC across sites 0.93-0.94), 30-day unplanned readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and all of a patient's final discharge diagnoses (frequency-weighted AUROC 0.90). These models outperformed state-of-the-art traditional predictive models in all cases. We also present a case-study of a neural-network attribution system, which illustrates how clinicians can gain some transparency into the predictions. We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios, complete with explanations that directly highlight evidence in the patient's chart.

958 citations