scispace - formally typeset
Search or ask a question
Author

Luc Bidaut

Other affiliations: Ninewells Hospital, University of Dundee, Geneva College  ...read more
Bio: Luc Bidaut is an academic researcher from University of Lincoln. The author has contributed to research in topics: Positron emission tomography & Medical imaging. The author has an hindex of 31, co-authored 127 publications receiving 4845 citations. Previous affiliations of Luc Bidaut include Ninewells Hospital & University of Dundee.


Papers
More filters
Journal ArticleDOI
TL;DR: The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus and is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
Abstract: Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (" nodule�3 mm," " nodule<3 mm," and "non- nodule�3 mm "). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked " nodul�3 mm " by at least one radiologist, of which 928 (34.7) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. Conclusions: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice. © 2011 U.S. Government.

1,923 citations

Journal ArticleDOI
TL;DR: In this paper, the authors conducted a randomized double-blind study of bevacizumab for the treatment of central nervous system radiation necrosis of the brain, where a total of 14 patients were entered into a placebo-controlled randomized doubleblind study.
Abstract: Purpose: To conduct a controlled trial of bevacizumab for the treatment of symptomatic radiation necrosis of the brain. Methods and Materials: A total of 14 patients were entered into a placebo-controlled randomized double-blind study of bevacizumab for the treatment of central nervous system radiation necrosis. All patients were required to have radiographic or biopsy proof of central nervous system radiation necrosis and progressive neurologic symptoms or signs. Eligible patients had undergone irradiation for head-and-neck carcinoma, meningioma, or low- to mid-grade glioma. Patients were randomized to receive intravenous saline or bevacizumab at 3-week intervals. The magnetic resonance imaging findings 3 weeks after the second treatment and clinical signs and symptoms defined the response or progression. Results: The volumes of necrosis estimated on T2-weighted fluid-attenuated inversion recovery and T1-weighted gadolinium-enhanced magnetic resonance imaging scans demonstrated that although no patient receiving placebo responded (0 of 7), all bevacizumab-treated patients did so (5 of 5 randomized and 7 of 7 crossover) with decreases in T2-weighted fluid-attenuated inversion recovery and T1-weighted gadolinium-enhanced volumes and a decrease in endothelial transfer constant. All bevacizumab-treated patients - and none of the placebo-treated patients - showed improvement in neurologic symptoms or signs. At a median of 10 months after the last dose of bevacizumab in patients receiving all four study doses, only 2 patients had experienced a recurrence of magnetic resonance imaging changes consistent with progressive radiation necrosis; one patient received a single additional dose of bevacizumab and the other patient received two doses. Conclusion: The Class I evidence of bevacizumab efficacy from the present study in the treatment of central nervous system radiation necrosis justifies consideration of this treatment option for people with radiation necrosis secondary to the treatment of head-and-neck cancer and brain cancer. © 2011 Elsevier Inc.

546 citations

Journal ArticleDOI
TL;DR: In this paper, a review examines IBC's unique clinical presentation, pathology, epidemiology, imaging, and biology and details current multidisciplinary management of the disease, which comprises systemic therapy, surgery, and radiation therapy.
Abstract: Inflammatory breast cancer (IBC) is a rare and aggressive form of invasive breast cancer accounting for 2.5% of all breast cancer cases. It is characterized by rapid progression, local and distant metastases, younger age of onset, and lower overall survival compared with other breast cancers. Historically, IBC is a lethal disease with less than a 5% survival rate beyond 5 years when treated with surgery or radiation therapy. Because of its rarity, IBC is often misdiagnosed as mastitis or generalized dermatitis. This review examines IBC's unique clinical presentation, pathology, epidemiology, imaging, and biology and details current multidisciplinary management of the disease, which comprises systemic therapy, surgery, and radiation therapy.

312 citations

Journal ArticleDOI
TL;DR: The spatial distribution of ventilation was found to be case specific and a 30% difference in mass-specific ventilation between the lower and upper lung halves was found and these images may be useful in radiotherapy planning.
Abstract: A novel method for dynamic ventilation imaging of the full respiratory cycle from four-dimensional computed tomography (4D CT) acquired without added contrast is presented. Three cases with 4D CT images obtained with respiratory gated acquisition for radiotherapy treatment planning were selected. Each of the 4D CT data sets was acquired during resting tidal breathing. A deformable image registration algorithm mapped each (voxel) corresponding tissue element across the 4D CT data set. From local average CT values, the change in fraction of air per voxel (i.e. local ventilation) was calculated. A 4D ventilation image set was calculated using pairs formed with the maximum expiration image volume, first the exhalation then the inhalation phases representing a complete breath cycle. A preliminary validation using manually determined lung volumes was performed. The calculated total ventilation was compared to the change in contoured lung volumes between the CT pairs (measured volume). A linear regression resulted in a slope of 1.01 and a correlation coefficient of 0.984 for the ventilation images. The spatial distribution of ventilation was found to be case specific and a 30% difference in mass-specific ventilation between the lower and upper lung halves was found. These images may be useful in radiotherapy planning.

240 citations

Journal ArticleDOI
TL;DR: Despite exciting progress in the understanding of breast cancer development and progression, and in the development of novel therapeutic strategies, breast cancer remains the second leading cause of cancer-related death in women.
Abstract: Despite exciting progress in the understanding of breast cancer development and progression, and in the development of novel therapeutic strategies, breast cancer remains the second leading cause of cancer-related death in women, with a yearly toll of more than 40,000 deaths in the United States

211 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Journal ArticleDOI
TL;DR: This paper organizes this material by establishing the relationship between the variations in the images and the type of registration techniques which can most appropriately be applied, and establishing a framework for understanding the merits and relationships between the wide variety of existing techniques.
Abstract: Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors, or from different viewpoints. Virtually all large systems which evaluate images require the registration of images, or a closely related operation, as an intermediate step. Specific examples of systems where image registration is a significant component include matching a target with a real-time image of a scene for target recognition, monitoring global land usage using satellite images, matching stereo images to recover shape for autonomous navigation, and aligning images from different medical modalities for diagnosis.Over the years, a broad range of techniques has been developed for various types of data and problems. These techniques have been independently studied for several different applications, resulting in a large body of research. This paper organizes this material by establishing the relationship between the variations in the images and the type of registration techniques which can most appropriately be applied. Three major types of variations are distinguished. The first type are the variations due to the differences in acquisition which cause the images to be misaligned. To register images, a spatial transformation is found which will remove these variations. The class of transformations which must be searched to find the optimal transformation is determined by knowledge about the variations of this type. The transformation class in turn influences the general technique that should be taken. The second type of variations are those which are also due to differences in acquisition, but cannot be modeled easily such as lighting and atmospheric conditions. This type usually effects intensity values, but they may also be spatial, such as perspective distortions. The third type of variations are differences in the images that are of interest such as object movements, growths, or other scene changes. Variations of the second and third type are not directly removed by registration, but they make registration more difficult since an exact match is no longer possible. In particular, it is critical that variations of the third type are not removed. Knowledge about the characteristics of each type of variation effect the choice of feature space, similarity measure, search space, and search strategy which will make up the final technique. All registration techniques can be viewed as different combinations of these choices. This framework is useful for understanding the merits and relationships between the wide variety of existing techniques and for assisting in the selection of the most suitable technique for a specific problem.

4,769 citations