scispace - formally typeset
Search or ask a question
Author

Luc Favre

Bio: Luc Favre is an academic researcher from Aix-Marseille University. The author has contributed to research in topics: Dewetting & Molecular beam epitaxy. The author has an hindex of 22, co-authored 95 publications receiving 1797 citations. Previous affiliations of Luc Favre include Katholieke Universiteit Leuven & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the fundamental electronic and magnetic properties of metal clusters deposited on surfaces and in matrices are discussed. And the influence of capping layers and deposition into matrices is discussed.

341 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of theoretical concepts and experimental results on the spontaneous formation and self-organization of SiGe quantum dots on silicon substrates, including morphological, structural and compositional properties.

183 citations

Journal ArticleDOI
06 Nov 2014-ACS Nano
TL;DR: The capabilities of a dewetting-based process, independent of the sample size, to fabricate Si-based resonators over large scales starting from commercial silicon-on-insulator (SOI) substrates are reported.
Abstract: Subwavelength-sized dielectric Mie resonators have recently emerged as a promising photonic platform, as they combine the advantages of dielectric microstructures and metallic nanoparticles supporting surface plasmon polaritons. Here, we report the capabilities of a dewetting-based process, independent of the sample size, to fabricate Si-based resonators over large scales starting from commercial silicon-on-insulator (SOI) substrates. Spontaneous dewetting is shown to allow the production of monocrystalline Mie-resonators that feature two resonant modes in the visible spectrum, as observed in confocal scattering spectroscopy. Homogeneous scattering responses and improved spatial ordering of the Si-based resonators are observed when dewetting is assisted by electron beam lithography. Finally, exploiting different thermal agglomeration regimes, we highlight the versatility of this technique, which, when assisted by focused ion beam nanopatterning, produces monocrystalline nanocrystals with ad hoc size, posi...

94 citations

Journal ArticleDOI
TL;DR: This work frames complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales via templated dewetting of thin SOI, and allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo deWetting, offering great potential also for microfluidic or sensing applications.
Abstract: Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications.

91 citations

Journal ArticleDOI
TL;DR: In this paper, theoretical and experimental evidence of an alternative semiconductor material, SiGe alloys, for dielectric Mie resonator applications is provided. But, the practical implementation of technological products is still elusive, one of the important limits is the absence of a highperforming material and a fabrication method that can be easily integrated into modern microelectronic devices at affordable costs.
Abstract: Dielectric Mie resonators have attracted a great deal of attention over the past few years thanks to their remarkable capabilities in manipulating light propagation at the nanoscale. However, the practical implementation of technological products is still elusive. One of the important limits is the absence of a high-performing material and a fabrication method that can be easily integrated into modern microelectronic devices at affordable costs. Here, we provide theoretical and experimental evidence of an alternative semiconductor material, SiGe alloys, for dielectric Mie resonator applications. As a material compatible with the processing requirements of the semiconductor industry, it possesses comparable optical properties to its conventional Si-based counterpart at visible frequencies in spite of its higher optical losses. These dielectric resonant particles can be obtained over very large surfaces on arbitrary silica substrates via spontaneous solid state dewetting of ultrathin (<100 nm) SiGe amorphou...

76 citations


Cited by
More filters
01 Jun 2005

3,154 citations

Journal ArticleDOI
TL;DR: Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.5.2.
Abstract: 5.1. Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.1. Cu−Ag 866 5.1.2. Cu−Au 867 5.1.3. Ag−Au 870 5.1.4. Cu−Ag−Au 872 5.2. Nanoalloys of Group 10 (Ni, Pd, Pt) 872 5.2.1. Ni−Pd 872 * To whom correspondence should be addressed. Phone: +39010 3536214. Fax:+39010 311066. E-mail: ferrando@fisica.unige.it. † Universita di Genova. ‡ Argonne National Laboratory. § University of Birmingham. | As of October 1, 2007, Chemical Sciences and Engineering Division. Volume 108, Number 3

3,114 citations

Journal ArticleDOI
TL;DR: The phenomenology of exchange bias and related effects in nanostructures is reviewed in this paper, where the main applications of exchange biased nanostructure are summarized and the implications of the nanometer dimensions on some of the existing exchange bias theories are briefly discussed.

1,721 citations