scispace - formally typeset
Search or ask a question
Author

Luc G. T. Morris

Other affiliations: Dartmouth College, Kettering University, New York University  ...read more
Bio: Luc G. T. Morris is an academic researcher from Memorial Sloan Kettering Cancer Center. The author has contributed to research in topics: Cancer & Medicine. The author has an hindex of 60, co-authored 235 publications receiving 18758 citations. Previous affiliations of Luc G. T. Morris include Dartmouth College & Kettering University.


Papers
More filters
Journal ArticleDOI
29 Jan 2015-Nature
TL;DR: It is shown that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1.
Abstract: The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1 Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22 A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53 Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours Therapeutic candidate alterations were identified in most HNSCCs

2,997 citations

Journal ArticleDOI
Robert M. Samstein1, Chung-Han Lee2, Chung-Han Lee1, Alexander N. Shoushtari1, Alexander N. Shoushtari2, Matthew D. Hellmann2, Matthew D. Hellmann1, Ronglai Shen1, Yelena Y. Janjigian1, Yelena Y. Janjigian2, David Barron1, Ahmet Zehir1, Emmet Jordan1, Antonio Omuro1, Thomas Kaley1, Sviatoslav M. Kendall1, Robert J. Motzer2, Robert J. Motzer1, A. Ari Hakimi1, Martin H. Voss1, Martin H. Voss2, Paul Russo1, Jonathan E. Rosenberg1, Jonathan E. Rosenberg2, Gopa Iyer2, Gopa Iyer1, Bernard H. Bochner1, Dean F. Bajorin1, Dean F. Bajorin2, Hikmat Al-Ahmadie1, Jamie E. Chaft1, Jamie E. Chaft2, Charles M. Rudin1, Charles M. Rudin2, Gregory J. Riely2, Gregory J. Riely1, Shrujal S. Baxi2, Shrujal S. Baxi1, Alan L. Ho1, Alan L. Ho2, Richard J. Wong1, David G. Pfister2, David G. Pfister1, Jedd D. Wolchok1, Jedd D. Wolchok2, Christopher A. Barker1, Philip H. Gutin1, Cameron Brennan1, Viviane Tabar1, Ingo K. Mellinghoff1, Lisa M. DeAngelis1, Charlotte E. Ariyan1, Nancy Y. Lee1, William D. Tap2, William D. Tap1, Mrinal M. Gounder1, Mrinal M. Gounder2, Sandra P. D'Angelo1, Sandra P. D'Angelo2, Leonard B. Saltz1, Leonard B. Saltz2, Zsofia K. Stadler2, Zsofia K. Stadler1, Howard I. Scher1, Howard I. Scher2, José Baselga2, José Baselga1, Pedram Razavi1, Pedram Razavi2, Christopher A. Klebanoff1, Christopher A. Klebanoff2, Rona Yaeger1, Rona Yaeger2, Neil H. Segal2, Neil H. Segal1, Geoffrey Y. Ku1, Geoffrey Y. Ku2, Ronald P. DeMatteo1, Marc Ladanyi1, Naiyer A. Rizvi3, Michael F. Berger1, Nadeem Riaz1, David B. Solit1, Timothy A. Chan1, Luc G. T. Morris1 
TL;DR: Analysis of advanced cancer patients treated with immune-checkpoint inhibitors shows that tumor mutational burden, as assessed by targeted next-generation sequencing, predicts survival after immunotherapy across multiple cancer types.
Abstract: Immune checkpoint inhibitor (ICI) treatments benefit some patients with metastatic cancers, but predictive biomarkers are needed. Findings in selected cancer types suggest that tumor mutational burden (TMB) may predict clinical response to ICI. To examine this association more broadly, we analyzed the clinical and genomic data of 1,662 advanced cancer patients treated with ICI, and 5,371 non-ICI-treated patients, whose tumors underwent targeted next-generation sequencing (MSK-IMPACT). Among all patients, higher somatic TMB (highest 20% in each histology) was associated with better overall survival. For most cancer histologies, an association between higher TMB and improved survival was observed. The TMB cutpoints associated with improved survival varied markedly between cancer types. These data indicate that TMB is associated with improved survival in patients receiving ICI across a wide variety of cancer types, but that there may not be one universal definition of high TMB.

2,343 citations

Journal ArticleDOI
Ahmet Zehir1, Ryma Benayed1, Ronak Shah1, Aijazuddin Syed1, Sumit Middha1, Hyunjae R. Kim1, Preethi Srinivasan1, Jianjiong Gao1, Debyani Chakravarty1, Sean M. Devlin1, Matthew D. Hellmann1, David Barron1, Alison M. Schram1, Meera Hameed1, Snjezana Dogan1, Dara S. Ross1, Jaclyn F. Hechtman1, Deborah DeLair1, Jinjuan Yao1, Diana Mandelker1, Donavan T. Cheng1, Raghu Chandramohan1, Abhinita Mohanty1, Ryan Ptashkin1, Gowtham Jayakumaran1, Meera Prasad1, Mustafa H Syed1, Anoop Balakrishnan Rema1, Zhen Y Liu1, Khedoudja Nafa1, Laetitia Borsu1, Justyna Sadowska1, Jacklyn Casanova1, Ruben Bacares1, Iwona Kiecka1, Anna Razumova1, Julie B Son1, Lisa Stewart1, Tessara Baldi1, Kerry Mullaney1, Hikmat Al-Ahmadie1, Efsevia Vakiani1, Adam Abeshouse1, Alexander V Penson1, Philip Jonsson1, Niedzica Camacho1, Matthew T. Chang1, Helen Won1, Benjamin Gross1, Ritika Kundra1, Zachary J. Heins1, Hsiao-Wei Chen1, Sarah Phillips1, Hongxin Zhang1, Jiaojiao Wang1, Angelica Ochoa1, Jonathan Wills1, Michael H. Eubank1, Stacy B. Thomas1, Stuart Gardos1, Dalicia N. Reales1, Jesse Galle1, Robert Durany1, Roy Cambria1, Wassim Abida1, Andrea Cercek1, Darren R. Feldman1, Mrinal M. Gounder1, A. Ari Hakimi1, James J. Harding1, Gopa Iyer1, Yelena Y. Janjigian1, Emmet Jordan1, Ciara Marie Kelly1, Maeve A. Lowery1, Luc G. T. Morris1, Antonio Omuro1, Nitya Raj1, Pedram Razavi1, Alexander N. Shoushtari1, Neerav Shukla1, Tara Soumerai1, Anna M. Varghese1, Rona Yaeger1, Jonathan A. Coleman1, Bernard H. Bochner1, Gregory J. Riely1, Leonard B. Saltz1, Howard I. Scher1, Paul Sabbatini1, Mark E. Robson1, David S. Klimstra1, Barry S. Taylor1, José Baselga1, Nikolaus Schultz1, David M. Hyman1, Maria E. Arcila1, David B. Solit1, Marc Ladanyi1, Michael F. Berger1 
TL;DR: A large-scale, prospective clinical sequencing initiative using a comprehensive assay, MSK-IMPACT, through which tumor and matched normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer are compiled and identified clinically relevant somatic mutations, novel noncoding alterations, and mutational signatures that were shared by common and rare tumor types.
Abstract: Tumor molecular profiling is a fundamental component of precision oncology, enabling the identification of genomic alterations in genes and pathways that can be targeted therapeutically. The existence of recurrent targetable alterations across distinct histologically defined tumor types, coupled with an expanding portfolio of molecularly targeted therapies, demands flexible and comprehensive approaches to profile clinically relevant genes across the full spectrum of cancers. We established a large-scale, prospective clinical sequencing initiative using a comprehensive assay, MSK-IMPACT, through which we have compiled tumor and matched normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer and available pathological and clinical annotations. Using these data, we identified clinically relevant somatic mutations, novel noncoding alterations, and mutational signatures that were shared by common and rare tumor types. Patients were enrolled on genomically matched clinical trials at a rate of 11%. To enable discovery of novel biomarkers and deeper investigation into rare alterations and tumor types, all results are publicly accessible.

2,330 citations

Journal ArticleDOI
22 Mar 2012-Nature
TL;DR: It is demonstrated that mutation of a single gene, isocitrate dehydrogenase 1 (IDH1), establishes CIMP by remodelling the methylome, and the epigenomic alterations resulting from mutant IDH1 activate key gene expression programs, characterize G-CIMP-positive proneural glioblastomas but not other gliOBlastomas, and are predictive of improved survival.
Abstract: Both genome-wide genetic and epigenetic alterations are fundamentally important for the development of cancers, but the interdependence of these aberrations is poorly understood. Glioblastomas and other cancers with the CpG island methylator phenotype (CIMP) constitute a subset of tumours with extensive epigenomic aberrations and a distinct biology. Glioma CIMP (G-CIMP) is a powerful determinant of tumour pathogenicity, but the molecular basis of G-CIMP remains unresolved. Here we show that mutation of a single gene, isocitrate dehydrogenase 1 (IDH1), establishes G-CIMP by remodelling the methylome. This remodelling results in reorganization of the methylome and transcriptome. Examination of the epigenome of a large set of intermediate-grade gliomas demonstrates a distinct G-CIMP phenotype that is highly dependent on the presence of IDH mutation. Introduction of mutant IDH1 into primary human astrocytes alters specific histone marks, induces extensive DNA hypermethylation, and reshapes the methylome in a fashion that mirrors the changes observed in G-CIMP-positive lower-grade gliomas. Furthermore, the epigenomic alterations resulting from mutant IDH1 activate key gene expression programs, characterize G-CIMP-positive proneural glioblastomas but not other glioblastomas, and are predictive of improved survival. Our findings demonstrate that IDH mutation is the molecular basis of CIMP in gliomas, provide a framework for understanding oncogenesis in these gliomas, and highlight the interplay between genomic and epigenomic changes in human cancers.

1,635 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Slow momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers, and it is notable that long‐term rapid increases in liver cancer mortality have attenuated in women and stabilized in men.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.

15,080 citations

Journal ArticleDOI
TL;DR: The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.

14,011 citations

Journal ArticleDOI
TL;DR: The American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2017, 1,688,780 new cancer cases and 600,920 cancer deaths are projected to occur in the United States. For all sites combined, the cancer incidence rate is 20% higher in men than in women, while the cancer death rate is 40% higher. However, sex disparities vary by cancer type. For example, thyroid cancer incidence rates are 3-fold higher in women than in men (21 vs 7 per 100,000 population), despite equivalent death rates (0.5 per 100,000 population), largely reflecting sex differences in the "epidemic of diagnosis." Over the past decade of available data, the overall cancer incidence rate (2004-2013) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2005-2014) declined by about 1.5% annually in both men and women. From 1991 to 2014, the overall cancer death rate dropped 25%, translating to approximately 2,143,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the cancer death rate was 15% higher in blacks than in whites in 2014, increasing access to care as a result of the Patient Protection and Affordable Care Act may expedite the narrowing racial gap; from 2010 to 2015, the proportion of blacks who were uninsured halved, from 21% to 11%, as it did for Hispanics (31% to 16%). Gains in coverage for traditionally underserved Americans will facilitate the broader application of existing cancer control knowledge across every segment of the population. CA Cancer J Clin 2017;67:7-30. © 2017 American Cancer Society.

13,427 citations

Journal ArticleDOI
TL;DR: Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
Abstract: With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.

13,073 citations