scispace - formally typeset
Search or ask a question
Author

Luc Rochette

Bio: Luc Rochette is an academic researcher from University of Burgundy. The author has contributed to research in topics: Oxidative stress & Ischemia. The author has an hindex of 49, co-authored 326 publications receiving 8672 citations. Previous affiliations of Luc Rochette include French Institute of Health and Medical Research & University of Strathclyde.


Papers
More filters
Journal ArticleDOI
TL;DR: It appears important to develop new compounds that target key vascular ROS producing enzymes and mimic endogenous antioxidants, which might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated with vascular diseases.

421 citations

Journal ArticleDOI
TL;DR: It appears that both a lack and excess of NO production in diseases can have various important pathological implications, and NOS modulators (exogenous and endogenous) and their therapeutic effects are discussed.

340 citations

Journal ArticleDOI
TL;DR: This review analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety.
Abstract: Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.

228 citations

Journal ArticleDOI
TL;DR: Dietary supplementation with α-lipoic acid has been successfully employed in a variety of in vivo models of disease associated with an imbalance of redox status: diabetes and cardiovascular diseases.
Abstract: Diabetes has emerged as a major threat to worldwide health. The exact mechanisms underlying the disease are unknown; however, there is growing evidence that the excess generation of reactive oxygen species (ROS) associated with hyperglycemia, causes oxidative stress in a variety of tissues. In this context, various natural compounds with pleiotropic actions like α-lipoic acid (LA) are of interest, especially in metabolic diseases such as diabetes. LA, either as a dietary supplement or a therapeutic agent, modulates redox potential because of its ability to match the redox status between different subcellular compartments as well as extracellularly. Both the oxidized (disulfide) and reduced (di-thiol: dihydro-lipoic acid, DHLA) forms of LA show antioxidant properties. LA exerts antioxidant effects in biological systems through ROS quenching but also via an action on transition metal chelation. Dietary supplementation with LA has been successfully employed in a variety of in vivo models of disease associated with an imbalance of redox status: diabetes and cardiovascular diseases. The complex and intimate association between increased oxidative stress and increased inflammation in related disorders such as diabetes, makes it difficult to establish the temporal sequence of the relationship.

222 citations

Journal ArticleDOI
TL;DR: ADSCs fulfill the general accepted criteria for cell-based therapies, but still need further investigations into their efficiency, taking into consideration the host-environment and patient-associated factors.
Abstract: Adipose tissue derived stem cells (ADSCs) are mesenchymal stem cells identified within subcutaneous tissue at the base of the hair follicle (dermal papilla cells), in the dermal sheets (dermal sheet cells), in interfollicular dermis, and in the hypodermis tissue. These cells are expected to play a major role in regulating skin regeneration and aging-associated morphologic disgraces and structural deficits. ADSCs are known to proliferate and differentiate into skin cells to repair damaged or dead cells, but also act by an autocrine and paracrine pathway to activate cell regeneration and the healing process. During wound healing, ADSCs have a great ability in migration to be recruited rapidly into wounded sites added to their differentiation towards dermal fibroblasts (DF), endothelial cells, and keratinocytes. Additionally, ADSCs and DFs are the major sources of the extracellular matrix (ECM) proteins involved in maintaining skin structure and function. Their interactions with skin cells are involved in regulating skin homeostasis and during healing. The evidence suggests that their secretomes ensure: (i) The change in macrophages inflammatory phenotype implicated in the inflammatory phase, (ii) the formation of new blood vessels, thus promoting angiogenesis by increasing endothelial cell differentiation and cell migration, and (iii) the formation of granulation tissues, skin cells, and ECM production, whereby proliferation and remodeling phases occur. These characteristics would be beneficial to therapeutic strategies in wound healing and skin aging and have driven more insights in many clinical investigations. Additionally, it was recently presented as the tool key in the new free-cell therapy in regenerative medicine. Nevertheless, ADSCs fulfill the general accepted criteria for cell-based therapies, but still need further investigations into their efficiency, taking into consideration the host-environment and patient-associated factors.

196 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations

01 Mar 2007
TL;DR: An initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI is described.
Abstract: Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. Members representing key societies in critical care and nephrology along with additional experts in adult and pediatric AKI participated in a two day conference in Amsterdam, The Netherlands, in September 2005 and were assigned to one of three workgroups. Each group's discussions formed the basis for draft recommendations that were later refined and improved during discussion with the larger group. Dissenting opinions were also noted. The final draft recommendations were circulated to all participants and subsequently agreed upon as the consensus recommendations for this report. Participating societies endorsed the recommendations and agreed to help disseminate the results. The term AKI is proposed to represent the entire spectrum of acute renal failure. Diagnostic criteria for AKI are proposed based on acute alterations in serum creatinine or urine output. A staging system for AKI which reflects quantitative changes in serum creatinine and urine output has been developed. We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.

5,467 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism is presented, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology.
Abstract: The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis an...

2,332 citations

Journal ArticleDOI
TL;DR: Methods used to trap RS, including spin trapping and aromatic hydroxylation, are critically examined, with a particular emphasis on those methods applicable to human studies and methods used to detect RS in cell culture.
Abstract: Free radicals and other reactive species (RS) are thought to play an important role in many human diseases. Establishing their precise role requires the ability to measure them and the oxidative damage that they cause. This article first reviews what is meant by the terms free radical, RS, antioxidant, oxidative damage and oxidative stress. It then critically examines methods used to trap RS, including spin trapping and aromatic hydroxylation, with a particular emphasis on those methods applicable to human studies. Methods used to measure oxidative damage to DNA, lipids and proteins and methods used to detect RS in cell culture, especially the various fluorescent ‘probes' of RS, are also critically reviewed. The emphasis throughout is on the caution that is needed in applying these methods in view of possible errors and artifacts in interpreting the results. Keywords: Cell culture, free radical, reactive species, antioxidant, oxidative stress, oxidative damage, fluorescent probe, lipid peroxidation, superoxide Introduction Free radicals and other ‘reactive oxygen (ROS)/nitrogen/chlorine species' (for an explanation of these terms see Table 1) are widely believed to contribute to the development of several age-related diseases, and perhaps, even to the aging process itself (Halliwell & Gutteridge, 1999; Sohal et al., 2002) by causing ‘oxidative stress' and ‘oxidative damage' (terms explained in Table 2). For example, many studies have shown increased oxidative damage to all the major classes of biomolecules in the brains of Alzheimer's patients (Halliwell, 2001; Butterfield, 2002; Liu et al., 2003). Other diseases in which oxidative damage has been implicated include cancer, atherosclerosis, other neurodegenerative diseases and diabetes (Hagen et al., 1994; Chowienczyk et al., 2000; Halliwell, 2000a, 2001, 2002a, 2002b; Parthasarathy et al., 2000). If oxidative damage contributes significantly to disease pathology (Table 3 lists the criteria needed to establish this), then actions that decrease it should be therapeutically beneficial (Halliwell, 2001; Lee et al., 2002a; Liu et al., 2003). If the oxidative damage is involved in the origin of a disease, then successful antioxidant treatment should delay or prevent the onset of that disease (Halliwell, 1991, 2002a, 2002b; Galli et al., 2002; Steinberg & Witztum, 2002). To establish the role of oxidative damage (Table 3), it is therefore essential to be able to measure it accurately. For example, the failure of interventions with antioxidants such as vitamin E, β-carotene or ascorbate to decrease disease incidence in several human intervention trials may have simply been due to the failure of these compounds to decrease oxidative damage in the subjects tested (Halliwell, 1999a, 2000c; Levine et al., 2001; Meagher et al., 2001). In this review, we will examine the methods available to measure reactive species (RS) and oxidative damage, with a particular emphasis on those applicable to human studies. Table 1 Nomenclature of reactive species Table 2 Some key definitions Table 3 Criteria for implicating RS as a significant mechanism of tissue injury in human disease Measuring RS in vivo: basic principles Some fascinating techniques such as L-band electron spin resonance (ESR) with nitroxyl probes and magnetic resonance imaging spin trapping are under development to measure RS directly in whole animals (e.g. Berliner et al., 2001; Han et al., 2001; Utsumi & Yamada, 2003), but no probes are currently suitable for human use. Most RS persist for only a short time in vivo and cannot be measured directly. There are a few exceptions: examples include H2O2 (discussed below), and perhaps, NO•, in the sense that serum levels of NO2− have been claimed to measure vascular endothelial NO• synthesis (Kelm et al., 1999), despite the fact that NO2− is quickly oxidized to NO3− in vivo (Kelm et al., 1999; Oldreive & Rice-Evans, 2001). Essentially, there are two approaches to detecting transient RS: attempting to trap these species and measure the levels of the trapped molecules and measuring the levels of the damage done by RS, that is, the amount of oxidative damage. Sometimes other approaches are used. They include measurements of erythrocyte antioxidant defences and of total antioxidant activity of body fluids; falls in these parameters are often taken as evidence of oxidative stress. Erythrocytes cannot synthesize proteins, however, and their antioxidant enzyme levels may drop as they ‘age' in the circulation (Denton et al., 1975). Thus changes in their levels are more likely to reflect changes in the rates of red blood cell turnover: if this slows down, the circulating erythrocytes will be older on average and so levels of antioxidant enzymes in them will appear to fall. Vice versa, if an intervention accelerates red cell removal or increases erythropoiesis, levels of antioxidants in red cells will seem to rise. Hence, such data should be interpreted with caution. Depending on the method that is used to measure it, the plasma or serum ‘total antioxidant capacity' (TAC) usually involves major contributions from urate, ascorbate and sometimes albumin −SH groups (Benzie & Strain, 1996; Halliwell & Gutteridge, 1999; Prior & Cao, 1999; Rice-Evans, 2000; Bartosz, 2003), although different methods measure different things (Schlesier et al., 2002; Bartosz, 2003). Thus, for example, if plasma albumin levels fall, TAC will fall. If urate levels rise, TAC will rise. The multiple changes in blood chemistry that occur in sick people mean that TAC changes should be interpreted with caution. TAC is also influenced by diet, often because consumption of certain foods may produce changes in plasma ascorbate and/or urate levels (Halliwell, 2003b).

2,239 citations

Journal ArticleDOI
TL;DR: The basic chemistry of freeradical formation in the body, the consequences of free radical induced tissue damage, and the function of antioxidant defence systems are reviewed, with particular reference to the development of atherosclerosis.
Abstract: Free radical production occurs continuously in all cells as part of normal cellular function. However, excess free radical production originating from endogenous or exogenous sources might play a role in many diseases. Antioxidants prevent free radical induced tissue damage by preventing the formation of radicals, scavenging them, or by promoting their decomposition. This article reviews the basic chemistry of free radical formation in the body, the consequences of free radical induced tissue damage, and the function of antioxidant defence systems, with particular reference to the development of atherosclerosis.

1,816 citations