scispace - formally typeset
Search or ask a question
Author

Luc Van Gool

Other affiliations: Microsoft, ETH Zurich, Politehnica University of Timișoara  ...read more
Bio: Luc Van Gool is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 133, co-authored 1307 publications receiving 107743 citations. Previous affiliations of Luc Van Gool include Microsoft & ETH Zurich.


Papers
More filters
Proceedings ArticleDOI
01 Jan 2011
TL;DR: The proposed method has been validated on two public datasets for the problem of detecting of cars under several views and shows that the proposed approach yields high detection rates while keeping efficiency.
Abstract: We propose an efficient method for object localization and 3D pose estimation. A two-step approach is used. In the first step, a pose estimator is evaluated in the input images in order to estimate potential object locations and poses. These candidates are then validated, in the second step, by the corresponding pose-specific classifier. The result is a detection approach that avoids the inherent and expensive cost of testing the complete set of specific classifiers over the entire image. A further speedup is achieved by feature sharing. Features are computed only once and are then used for evaluating the pose estimator and all specific classifiers. The proposed method has been validated on two public datasets for the problem of detecting of cars under several views. The results show that the proposed approach yields high detection rates while keeping efficiency.

27 citations

Posted Content
TL;DR: The powerful lossy image compression algorithm BPG is leverage to build a lossless image compression system that achieves state-of-the-art performance in learned lossless full-resolution image compression, outperforming previous learned approaches as well as PNG, WebP, and JPEG2000.
Abstract: We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system. Specifically, the original image is first decomposed into the lossy reconstruction obtained after compressing it with BPG and the corresponding residual. We then model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction, and combine it with entropy coding to losslessly encode the residual. Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder. The resulting compression system achieves state-of-the-art performance in learned lossless full-resolution image compression, outperforming previous learned approaches as well as PNG, WebP, and JPEG2000.

27 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: This paper proposes for the first time an unsupervised learning framework for consensus maximization, in the context of solving 3D vision problems, and establishes a relationship between inlier measurements, represented by an ideal of inlier set, and the subspace of polynomials representing the space of target transformations.
Abstract: Consensus maximization is a key strategy in 3D vision for robust geometric model estimation from measurements with outliers. Generic methods for consensus maximization, such as Random Sampling and Consensus (RANSAC), have played a tremendous role in the success of 3D vision, in spite of the ubiquity of outliers. However, replicating the same generic behaviour in a deeply learned architecture, using supervised approaches, has proven to be difficult. In that context, unsupervised methods have a huge potential to adapt to any unseen data distribution, and therefore are highly desirable. In this paper, we propose for the first time an unsupervised learning framework for consensus maximization, in the context of solving 3D vision problems. For that purpose, we establish a relationship between inlier measurements, represented by an ideal of inlier set, and the subspace of polynomials representing the space of target transformations. Using this relationship, we derive a constraint that must be satisfied by the sought inlier set. This constraint can be tested without knowing the transformation parameters, therefore allows us to efficiently define the geometric model fitting cost. This model fitting cost is used as a supervisory signal for learning consensus maximization, where the learning process seeks for the largest measurement set that minimizes the proposed model fitting cost. Using our method, we solve a diverse set of 3D vision problems, including 3D-3D matching, non-rigid 3D shape matching with piece-wise rigidity and image-to-image matching. Despite being unsupervised, our method outperforms RANSAC in all three tasks for several datasets.

27 citations

Proceedings ArticleDOI
09 Mar 2022
TL;DR: A novel Transformer-based method, coarse-to-fine sparse Transformer (CST), firstly embedding HSI sparsity into deep learning for HSI reconstruction and comprehensive experiments show that this CST significantly outperforms state-of-the-art methods while requiring cheaper computational costs.
Abstract: Many algorithms have been developed to solve the inverse problem of coded aperture snapshot spectral imaging (CASSI), i.e., recovering the 3D hyperspectral images (HSIs) from a 2D compressive measurement. In recent years, learning-based methods have demonstrated promising performance and dominated the mainstream research direction. However, existing CNN-based methods show limitations in capturing long-range dependencies and non-local self-similarity. Previous Transformer-based methods densely sample tokens, some of which are uninformative, and calculate the multi-head self-attention (MSA) between some tokens that are unrelated in content. This does not fit the spatially sparse nature of HSI signals and limits the model scalability. In this paper, we propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST), firstly embedding HSI sparsity into deep learning for HSI reconstruction. In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing. Comprehensive experiments show that our CST significantly outperforms state-of-the-art methods while requiring cheaper computational costs. The code and models will be released at https://github.com/caiyuanhao1998/MST

27 citations

Proceedings ArticleDOI
24 Mar 2017
TL;DR: This work proposes a new approach for detecting repeated patterns on a grid in a single image that detects repetitions in the space of pre-trained deep CNN filter responses at all layer levels, and incorporates high level features implicitly implicitly.
Abstract: We propose a new approach for detecting repeated patterns on a grid in a single image. To do so, we detect repetitions in the space of pre-trained deep CNN filter responses at all layer levels. These encode features at several conceptual levels (from low-level patches to high-level semantics) as well as scales (from local to global). As a result, our repeated pattern detector is robust to challenging cases where repeated tiles show strong variation in visual appearance due to occlusions, lighting or background clutter. Our method contrasts with previous approaches that rely on keypoint extraction, description and clustering or on patch correlation. These generally only detect low-level feature clusters that do not handle variations in visual appearance of the patterns very well. Our method is simpler, yet incorporates high level features implicitly. As such, we can demonstrate detections of repetitions with strong appearance variations, organized on a nearly-regular axis-aligned grid Results show robustness and consistency throughout a varied database of more than 150 images.

27 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations