scispace - formally typeset
Search or ask a question
Author

Luc Van Gool

Other affiliations: Microsoft, ETH Zurich, Politehnica University of Timișoara  ...read more
Bio: Luc Van Gool is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 133, co-authored 1307 publications receiving 107743 citations. Previous affiliations of Luc Van Gool include Microsoft & ETH Zurich.


Papers
More filters
Book ChapterDOI
01 Jan 2002
TL;DR: A self-learning prototype system for the real-time detection of unusual motion patterns and motion recognition based on the same method, the extended Condensation algorithm, used for the object tracking.
Abstract: This paper describes a self-learning prototype system for the real-time detection of unusual motion patterns The proposed surveillance system uses a three-step approach consisting of a tracking, a learning and a recognition part In the first step, an arbitrary, changing number of objects are tracked with an extension of the Condensation algorithm Prom the history of the tracked object states, temporal trajectories are formed which describe the motion paths of these objects Secondly, characteristic motion patterns are learned by clustering these trajectories into prototype curves In the final step, motion recognition is then tackled by tracking the position within these prototype curves based on the same method, the extended Condensation algorithm, used for the object tracking

27 citations

Proceedings ArticleDOI
28 Nov 2001
TL;DR: The system presented in this paper allows to take a guided tour to a virtual reconstruction of the ancient site of Sagalassos by combining 3D models of the landscape and remains with CAD reconstructions of monuments based on archaeological hypothesis.
Abstract: The system presented in this paper allows to take a guided tour to a virtual reconstruction of the ancient site of Sagalassos. The site has been reconstructed by combining 3D models of the landscape and remains with CAD reconstructions of monuments based on archaeological hypothesis. The 3D models were obtained using advanced image-based modelling techniques developed over the last few years in computer vision. The visitor can communicate with the virtual guide through natural speech. The guide itself is represented by a 3D face model.

27 citations

Proceedings ArticleDOI
08 Dec 2014
TL;DR: This work introduces a way of capturing semantic scene context of a key point into a compact description and proposes to learn correct match ability of descriptors from these semantic contexts.
Abstract: Image-to-image feature matching is the single most restrictive time bottleneck in any matching pipeline We propose two methods for improving the speed and quality by employing semantic scene segmentation First, we introduce a way of capturing semantic scene context of a key point into a compact description Second, we propose to learn correct match ability of descriptors from these semantic contexts Finally, we further reduce the complexity of matching to only a pre-computed set of semantically close key points All methods can be used independently and in the evaluation we show combinations for maximum speed benefits Overall, our proposed methods outperform all baselines and provide significant improvements in accuracy and an order of magnitude faster key point matching

27 citations

Journal ArticleDOI
01 Jun 2022
TL;DR: The ARAD_1K dataset as discussed by the authors is a large-scale RGB image dataset with 1,000 images, which was used for the third biennial challenge on spectral reconstruction from RGB images, i.e., the recovery of whole-scene hyperspectral information from a 3-channel RGB image.
Abstract: This paper reviews the third biennial challenge on spectral reconstruction from RGB images, i.e., the recovery of whole-scene hyperspectral (HS) information from a 3-channel RGB image. This challenge presents the "ARAD_1K" data set: a new, larger-than-ever natural hyperspectral image data set containing 1,000 images. Challenge participants were required to recover hyper-spectral information from synthetically generated JPEG-compressed RGB images simulating capture by a known calibrated camera, operating under partially known parameters, in a setting which includes acquisition noise. The challenge was attended by 241 teams, with 60 teams com-peting in the final testing phase, 12 of which provided de-tailed descriptions of their methodology which are included in this report. The performance of these submissions is re-viewed and provided here as a gauge for the current state-of-the-art in spectral reconstruction from natural RGB images.

27 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations