scispace - formally typeset
Search or ask a question
Author

Luc Van Gool

Other affiliations: Microsoft, ETH Zurich, Politehnica University of Timișoara  ...read more
Bio: Luc Van Gool is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 133, co-authored 1307 publications receiving 107743 citations. Previous affiliations of Luc Van Gool include Microsoft & ETH Zurich.


Papers
More filters
Book ChapterDOI
05 Sep 2010
TL;DR: A new robust 3D shape classification method is proposed, which extends a robust 2D feature descriptor, SURF, to be used in the context of 3D shapes and shows how3D shape class recognition can be improved by probabilistic Hough transform based methods, already popular in 2D.
Abstract: Most methods for the recognition of shape classes from 3D datasets focus on classifying clean, often manually generated models. However, 3D shapes obtained through acquisition techniques such as Structure-from-Motion or LIDAR scanning are noisy, clutter and holes. In that case global shape features--still dominating the 3D shape class recognition literature--are less appropriate. Inspired by 2D methods, recently researchers have started to work with local features. In keeping with this strand, we propose a new robust 3D shape classification method. It contains two main contributions. First, we extend a robust 2D feature descriptor, SURF, to be used in the context of 3D shapes. Second, we show how 3D shape class recognition can be improved by probabilistic Hough transform based methods, already popular in 2D. Through our experiments on partial shape retrieval, we show the power of the proposed 3D features. Their combination with the Hough transform yields superior results for class recognition on standard datasets. The potential for the applicability of such a method in classifying 3D obtained from Structure-from-Motion methods is promising, as we show in some initial experiments.

365 citations

Proceedings ArticleDOI
Yuhua Chen1, Wen Li1, Luc Van Gool1
18 Jun 2018
TL;DR: This work proposes a new reality oriented adaptation approach for urban scene semantic segmentation by learning from synthetic data that takes advantage of the intrinsic spatial structure presented in urban scene images, and proposes a spatial-aware adaptation scheme to effectively align the distribution of two domains.
Abstract: Exploiting synthetic data to learn deep models has attracted increasing attention in recent years. However, the intrinsic domain difference between synthetic and real images usually causes a significant performance drop when applying the learned model to real world scenarios. This is mainly due to two reasons: 1) the model overfits to synthetic images, making the convolutional filters incompetent to extract informative representation for real images; 2) there is a distribution difference between synthetic and real data, which is also known as the domain adaptation problem. To this end, we propose a new reality oriented adaptation approach for urban scene semantic segmentation by learning from synthetic data. First, we propose a target guided distillation approach to learn the real image style, which is achieved by training the segmentation model to imitate a pretrained real style model using real images. Second, we further take advantage of the intrinsic spatial structure presented in urban scene images, and propose a spatial-aware adaptation scheme to effectively align the distribution of two domains. These two modules can be readily integrated with existing state-of-the-art semantic segmentation networks to improve their generalizability when adapting from synthetic to real urban scenes. We evaluate the proposed method on Cityscapes dataset by adapting from GTAV and SYNTHIA datasets, where the results demonstrate the effectiveness of our method.

346 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: A novel and very efficient method for generic object detection based on a randomized version of Prim's algorithm, using the connectivity graph of an image's super pixels, with weights modelling the probability that neighbouring super pixels belong to the same object.
Abstract: Generic object detection is the challenging task of proposing windows that localize all the objects in an image, regardless of their classes. Such detectors have recently been shown to benefit many applications such as speeding-up class-specific object detection, weakly supervised learning of object detectors and object discovery. In this paper, we introduce a novel and very efficient method for generic object detection based on a randomized version of Prim's algorithm. Using the connectivity graph of an image's super pixels, with weights modelling the probability that neighbouring super pixels belong to the same object, the algorithm generates random partial spanning trees with large expected sum of edge weights. Object localizations are proposed as bounding-boxes of those partial trees. Our method has several benefits compared to the state-of-the-art. Thanks to the efficiency of Prim's algorithm, it samples proposals very quickly: 1000 proposals are obtained in about 0.7s. With proposals bound to super pixel boundaries yet diversified by randomization, it yields very high detection rates and windows that tightly fit objects. In extensive experiments on the challenging PASCAL VOC 2007 and 2012 and SUN2012 benchmark datasets, we show that our method improves over state-of-the-art competitors for a wide range of evaluation scenarios.

340 citations

Book ChapterDOI
31 Aug 2011
TL;DR: A system for estimating location and orientation of a person's head, from depth data acquired by a low quality device, based on discriminative random regression forests based on ensembles of random trees trained by splitting each node so as to simultaneously reduce the entropy of the class labels distribution and the variance of the head position and orientation.
Abstract: We present a system for estimating location and orientation of a person's head, from depth data acquired by a low quality device Our approach is based on discriminative random regression forests: ensembles of random trees trained by splitting each node so as to simultaneously reduce the entropy of the class labels distribution and the variance of the head position and orientation We evaluate three different approaches to jointly take classification and regression performance into account during training For evaluation, we acquired a new dataset and propose a method for its automatic annotation

336 citations

Posted Content
TL;DR: In this paper, a robust and fast to evaluate energy function is defined, based on enforcing color similarity between the bound-aries and the superpixel color histogram, which achieves a performance comparable to the state-of-the-art.
Abstract: Superpixel algorithms aim to over-segment the image by grouping pixels that belong to the same object. Many state-of-the-art superpixel algorithms rely on minimizing objective functions to enforce color ho- mogeneity. The optimization is accomplished by sophis- ticated methods that progressively build the superpix- els, typically by adding cuts or growing superpixels. As a result, they are computationally too expensive for real-time applications. We introduce a new approach based on a simple hill-climbing optimization. Starting from an initial superpixel partitioning, it continuously refines the superpixels by modifying the boundaries. We define a robust and fast to evaluate energy function, based on enforcing color similarity between the bound- aries and the superpixel color histogram. In a series of experiments, we show that we achieve an excellent com- promise between accuracy and efficiency. We are able to achieve a performance comparable to the state-of- the-art, but in real-time on a single Intel i7 CPU at 2.8GHz.

333 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations