scispace - formally typeset
Search or ask a question
Author

Luc Van Gool

Other affiliations: Microsoft, ETH Zurich, Politehnica University of Timișoara  ...read more
Bio: Luc Van Gool is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 133, co-authored 1307 publications receiving 107743 citations. Previous affiliations of Luc Van Gool include Microsoft & ETH Zurich.


Papers
More filters
Proceedings ArticleDOI
Mohamad Shahbazi1, Zhiwu Huang1, Danda Pani Paudel1, Ajad Chhatkuli1, Luc Van Gool1 
01 Jun 2021
Abstract: Generative adversarial networks (GANs) have shown impressive results in both unconditional and conditional image generation. In recent literature, it is shown that pre-trained GANs, on a different dataset, can be transferred to improve the image generation from a small target data. The same, however, has not been well-studied in the case of conditional GANs (cGANs), which provides new opportunities for knowledge transfer compared to unconditional setup. In particular, the new classes may borrow knowledge from the related old classes, or share knowledge among themselves to improve the training. This motivates us to study the problem of efficient conditional GAN transfer with knowledge propagation across classes. To address this problem, we introduce a new GAN transfer method to explicitly propagate the knowledge from the old classes to the new classes. The key idea is to enforce the popularly used conditional batch normalization (BN) to learn the class-specific information of the new classes from that of the old classes, with implicit knowledge sharing among the new ones. This allows for an efficient knowledge propagation from the old classes to the new ones, with the BN parameters increasing linearly with the number of new classes. The extensive evaluation demonstrates the clear superiority of the proposed method over state-of-the-art competitors for efficient conditional GAN transfer tasks. The code is available at: https://github.com/mshahbazi72/cGANTransfer

24 citations

Proceedings ArticleDOI
01 Jan 2011
TL;DR: A novel aspect of branch&rank is that a better ranking function is expected to decrease the number of classifier calls during detection, and this system separates image classification from object recognition, yet combines them in a single, structured SVM formulation.
Abstract: Branch&rank is an object detection scheme that overcomes the inherent limitation of branch&bound: this method works with arbitrary (classifier) functions whereas tight bounds exist only for simple functions. Objects are usually detected with less than 100 classifier evaluation, which paves the way for using strong (and thus costly) classifiers: We utilize non-linear SVMs with RBF-c 2 kernels without a cascade-like approximation. Our approach features three key components: a ranking function that operates on sets of hypotheses and a grouping of these into different tasks. Detection efficiency results from adaptively sub-dividing the object search space into decreasingly smaller sets. This is inherited from branch&bound, while the ranking function supersedes a tight bound which is often unavailable (except for too simple function classes). The grouping makes the system effective: it separates image classification from object recognition, yet combines them in a single, structured SVM formulation. A novel aspect of branch&rank is that a better ranking function is expected to decrease the number of classifier calls during detection. We demonstrate the algorithmic properties using the VOC’07 dataset.

24 citations

Proceedings ArticleDOI
15 Jul 2011
TL;DR: A method for incorporating latent variables into object and action classification and an exploration of a way to learn a better classifier by iterative expansion of the latent parameter space are provided.
Abstract: In this paper we propose a generic framework to incorporate unobserved auxiliary information for classifying objects and actions. This framework allows us to explicitly account for localisation and alignment of representations for generic object and action classes as latent variables. We approach this problem in the discriminative setting as learning a max-margin classifier that infers the class label along with the latent variables. Through this paper we make the following contributions a) We provide a method for incorporating latent variables into object and action classification b) We specifically account for the presence of an explicit class related subregion which can include foreground and/or background. c) We explore a way to learn a better classifier by iterative expansion of the latent parameter space. We demonstrate the performance of our approach by rigorous experimental evaluation on a number of standard object and action recognition datasets.

24 citations

Journal ArticleDOI
TL;DR: An image data structure, coined as joint integral histograms (JIHs), that represents the global information of two correlated images and achieves a speedup factor of 2–3 orders of magnitude while producing similar filtering results.
Abstract: In this brief, we present a constant time method for the joint bilateral filtering. First, we propose an image data structure, coined as joint integral histograms (JIHs). Extending the classic integral images and the integral histograms, it represents the global information of two correlated images. In a JIH, the value at each bin indicates an integral determined by the two images. Then, the joint bilateral filtering is transformed to computation and manipulation of histograms. Utilizing the JIHs, we are capable of joint bilateral filtering in constant time. Its performance is validated in a digital photography approach using Flash–noFlash image pairs. Compared with the brute-force method, the proposed method achieves a speedup factor of 2–3 orders of magnitude while producing similar filtering results.

24 citations

Journal ArticleDOI
TL;DR: DPIR as discussed by the authors proposes a deep denoiser prior as a modular part into a half quadratic splitting-based iterative algorithm to solve various image restoration problems, which achieves competitive or even superior performance against state-of-the-art learning-based methods.
Abstract: Recent works on plug-and-play image restoration have shown that a denoiser can implicitly serve as the image prior for model-based methods to solve many inverse problems. Such a property induces considerable advantages for plug-and-play image restoration when the denoiser is discriminatively learned via deep convolutional neural network (CNN) with large modeling capacity. However, while deeper and larger CNN models are rapidly gaining popularity, existing plug-and-play image restoration hinders its performance due to the lack of suitable denoiser prior. In order to push the limits of plug-and-play image restoration, we set up a benchmark deep denoiser prior by training a highly flexible and effective CNN denoiser. We then plug the deep denoiser prior as a modular part into a half quadratic splitting based iterative algorithm to solve various image restoration problems. We, meanwhile, provide a thorough analysis of parameter setting, intermediate results and empirical convergence to better understand the working mechanism. Experimental results on three representative image restoration tasks, including deblurring, super-resolution and demosaicing, demonstrate that the proposed plug-and-play image restoration with deep denoiser prior not only significantly outperforms other state-of-the-art model-based methods but also achieves competitive or even superior performance against state-of-the-art learning-based methods. The source code is available: https://github.com/cszn/DPIR

24 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations