scispace - formally typeset
Search or ask a question
Author

Luc Van Gool

Other affiliations: Microsoft, ETH Zurich, Politehnica University of Timișoara  ...read more
Bio: Luc Van Gool is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 133, co-authored 1307 publications receiving 107743 citations. Previous affiliations of Luc Van Gool include Microsoft & ETH Zurich.


Papers
More filters
Proceedings ArticleDOI
14 Jun 2006
TL;DR: This paper addresses the problem of camera self-calibration, bundle adjustment and 3D reconstruction from line segments in two images of poorly-textured indoor scenes with a new method to identify polyhedral junctions resulting from the intersections of the line segments.
Abstract: This paper addresses the problem of camera self-calibration, bundle adjustment and 3D reconstruction from line segments in two images of poorly-textured indoor scenes. First, we generate line segment correspondences, using an extended version of our previously proposed matching scheme. The first main contribution is a new method to identify polyhedral junctions resulting from the intersections of the line segments. At the same time, the images are segmented into planar polygons. This is done using an algorithm based on a Binary Space Partitioning (BSP) tree. The junctions are matched end points of the detected line segments and hence can be used to obtain the epipolar geometry. The essential matrix is considered for metric camera calibration. For better stability, the second main contribution consists in a bundle adjustment on the line segments and the camera parameters that reduces the number of unknowns by a maximum flow algorithm. Finally, a piecewise-planar 3D reconstruction is computed based on the segmentation of the BSP tree. The system?s performance is tested on some challenging examples.

22 citations

Book ChapterDOI
05 Nov 2012
TL;DR: In this paper, the replacement of the nearest neighbor part with more elaborate and robust (sparse) representations are studied, as well as trading performance for speed for practical purposes.
Abstract: Naive Bayes Nearest Neighbor (NBNN) has been proposed as a powerful, learning-free, non-parametric approach for object classification. Its good performance is mainly due to the avoidance of a vector quantization step, and the use of image-to-class comparisons, yielding good generalization. In this paper we study the replacement of the nearest neighbor part with more elaborate and robust (sparse) representations, as well as trading performance for speed for practical purposes. The representations investigated are k-Nearest Neighbors (kNN), Iterative Nearest Neighbors (INN) solving a constrained least squares (LS) problem, Local Linear Embedding (LLE), a Sparse Representation obtained by l1-regularized LS ($SR_{l_1}$), and a Collaborative Representation obtained as the solution of a l2-regularized LS problem ($CR_{l_2}$). In particular, NIMBLE and K-DES descriptors proved viable alternatives to SIFT and, the NB$SR_{l_1}$ and NBINN classifiers provide significant improvements over NBNN, obtaining competitive results on Scene-15, Caltech-101, and PASCAL VOC 2007 datasets, while remaining learning-free approaches (i.e., no parameters need to be learned).

22 citations

Posted Content
TL;DR: This paper aims at learning category-specific 3D keypoints, in an unsupervised manner, using a collection of misaligned 3D point clouds of objects from an unknown category, using the symmetric linear basis shapes without assuming the plane of symmetry to be known.
Abstract: Automatic discovery of category-specific 3D keypoints from a collection of objects of some category is a challenging problem. One reason is that not all objects in a category necessarily have the same semantic parts. The level of difficulty adds up further when objects are represented by 3D point clouds, with variations in shape and unknown coordinate frames. We define keypoints to be category-specific, if they meaningfully represent objects' shape and their correspondences can be simply established order-wise across all objects. This paper aims at learning category-specific 3D keypoints, in an unsupervised manner, using a collection of misaligned 3D point clouds of objects from an unknown category. In order to do so, we model shapes defined by the keypoints, within a category, using the symmetric linear basis shapes without assuming the plane of symmetry to be known. The usage of symmetry prior leads us to learn stable keypoints suitable for higher misalignments. To the best of our knowledge, this is the first work on learning such keypoints directly from 3D point clouds. Using categories from four benchmark datasets, we demonstrate the quality of our learned keypoints by quantitative and qualitative evaluations. Our experiments also show that the keypoints discovered by our method are geometrically and semantically consistent.

22 citations

Journal ArticleDOI
TL;DR: This paper studies one particular form of cognitive feedback, where the ability to recognize objects of a given category is exploited to infer different kinds of meta-data annotations for images of previously unseen object instances, in particular information on 3D shape.

22 citations

Posted Content
TL;DR: This paper presents an uncalibrated deep neural network framework for the photometric stereo problem and explicitly models the concave and convex parts of a complex surface to consider the effects of interreflections in the image formation process.
Abstract: This paper presents an uncalibrated deep neural network framework for the photometric stereo problem. For training models to solve the problem, existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both. However, in practice, it is challenging to procure both of this information precisely, which restricts the broader adoption of photometric stereo algorithms for vision application. To bypass this difficulty, we propose an uncalibrated neural inverse rendering approach to this problem. Our method first estimates the light directions from the input images and then optimizes an image reconstruction loss to calculate the surface normals, bidirectional reflectance distribution function value, and depth. Additionally, our formulation explicitly models the concave and convex parts of a complex surface to consider the effects of interreflections in the image formation process. Extensive evaluation of the proposed method on the challenging subjects generally shows comparable or better results than the supervised and classical approaches.

22 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations