scispace - formally typeset
Search or ask a question
Author

Luc Van Gool

Other affiliations: Microsoft, ETH Zurich, Politehnica University of Timișoara  ...read more
Bio: Luc Van Gool is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 133, co-authored 1307 publications receiving 107743 citations. Previous affiliations of Luc Van Gool include Microsoft & ETH Zurich.


Papers
More filters
01 Jan 2001
TL;DR: In this paper, a 3D reconstruction of a speaking face is produced for each video frame, and a topological mask of the lower half of the face is fitted to the motion.
Abstract: We are all experts in the perception and interpretation of faces and their dynamics. This makes facial animation a particularly demanding area of graphics. Increasingly, computer vision is brought to bear and 3D models and their motions are learned from observations. The paper subscribes to this strand for the 3D modeling of human speech. The approach follows a kind of bootstrap procedure. First, 3D shape statistics are learned from faces with a few markers. A 3D reconstruction of a speaking face is produced for each video frame. A topological mask of the lower half of the face is fitted to the motion. The 3D shape statistics are extracted and pricipal components analysis (PCA) reduces the dimension of the maskspace. The final speech tracker can work without markers, as it is only allowed to roam this constrained space of masks. Upon the representation of the different visemes in this space, speech or text can be used as input for animation.

9 citations

Proceedings ArticleDOI
01 Jun 2021
TL;DR: In this paper, a differentiable Similarity Guided Sampling (SGS) module is proposed to learn the similarity of temporal features and grouping similar features together, which can be plugged into any existing 3D CNN architecture.
Abstract: While state-of-the-art 3D Convolutional Neural Networks (CNN) achieve very good results on action recognition datasets, they are computationally very expensive and require many GFLOPs. While the GFLOPs of a 3D CNN can be decreased by reducing the temporal feature resolution within the network, there is no setting that is optimal for all input clips. In this work, we therefore introduce a differentiable Similarity Guided Sampling (SGS) module, which can be plugged into any existing 3D CNN architecture. SGS empowers 3D CNNs by learning the similarity of temporal features and grouping similar features together. As a result, the temporal feature resolution is not anymore static but it varies for each input video clip. By integrating SGS as an additional layer within current 3D CNNs, we can convert them into much more efficient 3D CNNs with adaptive temporal feature resolutions (ATFR). Our evaluations show that the proposed module improves the state-of-the-art by reducing the computational cost (GFLOPs) by half while preserving or even improving the accuracy. We evaluate our module by adding it to multiple state-of-the-art 3D CNNs on various datasets such as Kinetics-600, Kinetics-400, mini-Kinetics, Something-Something V2, UCF101, and HMDB51.

9 citations

Book ChapterDOI
13 Jan 2015
TL;DR: This paper unify the proposed subRW and the other popular random walk algorithms, and design a subRW algorithm with label prior to solve the segmentation problem of objects with thin and elongated parts.
Abstract: In this paper, we propose a subMarkov random walk (subRW) with the label prior with added auxiliary nodes for seeded image segmentation. We unify the proposed subRW and the other popular random walk algorithms. This unifying view can transfer the intrinsic findings between different random walk algorithms, and offer the new ideas for designing the novel random walk algorithms by changing the auxiliary nodes. According to the second benefit, we design a subRW algorithm with label prior to solve the segmentation problem of objects with thin and elongated parts. The experimental results on natural images with twigs demonstrate that our algorithm achieves better performance than the previous random walk algorithms.

9 citations

Proceedings ArticleDOI
01 Jan 2011
TL;DR: This work proposes a purely data-driven method which exploits the temporal structure of the workflow, free of human intervention and does not need parameter tuning, and shows a simple but efficient extension to analyze the image stream in real time.
Abstract: In this work, we present an approach for the automatic discovery of workflows in industrial environments. In such cluttered scenes, one faces many challenges, which limit the use of state-of-the-art object detection and tracking methods. Instead we propose a purely data-driven method which exploits the temporal structure of the workflow. Our robust technique is free of human intervention and does not need parameter tuning. We show results on two camera views of a working cell in a car assembly line. Workflows are extracted robustly, they match well across the camera views and they are conform with human annotation. Furthermore, we show a simple but efficient extension to analyze the image stream in real time. This assures a smooth running of the workflow and enables the notification of different types of unexpected scenarios.

9 citations

Posted Content
Yawei Li1, Shuhang Gu1, Kai Zhang1, Luc Van Gool1, Radu Timofte1 
TL;DR: In this paper, a differentiable pruning method via hypernetworks for automatic network pruning is introduced, which takes latent vectors as input and generates the weight parameters of the backbone network.
Abstract: Network pruning has been the driving force for the acceleration of neural networks and the alleviation of model storage/transmission burden. With the advent of AutoML and neural architecture search (NAS), pruning has become topical with automatic mechanism and searching based architecture optimization. Yet, current automatic designs rely on either reinforcement learning or evolutionary algorithm. Due to the non-differentiability of those algorithms, the pruning algorithm needs a long searching stage before reaching the convergence. To circumvent this problem, this paper introduces a differentiable pruning method via hypernetworks for automatic network pruning. The specifically designed hypernetworks take latent vectors as input and generate the weight parameters of the backbone network. The latent vectors control the output channels of the convolutional layers in the backbone network and act as a handle for the pruning of the layers. By enforcing $\ell_1$ sparsity regularization to the latent vectors and utilizing proximal gradient solver, sparse latent vectors can be obtained. Passing the sparsified latent vectors through the hypernetworks, the corresponding slices of the generated weight parameters can be removed, achieving the effect of network pruning. The latent vectors of all the layers are pruned together, resulting in an automatic layer configuration. Extensive experiments are conducted on various networks for image classification, single image super-resolution, and denoising. And the experimental results validate the proposed method.

9 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations