scispace - formally typeset
Search or ask a question
Author

Luc Van Gool

Other affiliations: Microsoft, ETH Zurich, Politehnica University of Timișoara  ...read more
Bio: Luc Van Gool is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 133, co-authored 1307 publications receiving 107743 citations. Previous affiliations of Luc Van Gool include Microsoft & ETH Zurich.


Papers
More filters
Book ChapterDOI
TL;DR: The approach can extend any viewpoint invariant feature extractor and covers the object with matches, and simultaneously separates the correct matches from the wrong ones, and approximative contours of the object are produced.
Abstract: Methods based on local, viewpoint invariant features have proven capable of recognizing objects in spite of viewpoint changes, occlusion and clutter. However, these approaches fail when these factors are too strong, due to the limited repeatability and discriminative power of the features. As additional shortcomings, the objects need to be rigid and only their approximate location is found. We present an object recognition approach which overcomes these limitations. An initial set of feature correspondences is first generated. The method anchors on it and then gradually explores the surrounding area, trying to construct more and more matching features, increasingly farther from the initial ones. The resulting process covers the object with matches, and simultaneously separates the correct matches from the wrong ones. Hence, recognition and segmentation are achieved at the same time. Only very few correct initial matches suffice for reliable recognition. Experimental results on still images and television news broadcasts demonstrate the stronger power of the presented method in dealing with extensive clutter, dominant occlusion, large scale and viewpoint changes. Moreover non-rigid deformations are explicitly taken into account, and the approximative contours of the object are produced. The approach can extend any viewpoint invariant feature extractor.

159 citations

Proceedings ArticleDOI
01 Jun 2018
TL;DR: Zhang et al. as discussed by the authors decompose the pose parameters into a set of per-pixel estimations, i.e., 2D heat maps, 3D heatmaps and unit 3D directional vector fields.
Abstract: We present a simple and effective method for 3D hand pose estimation from a single depth frame. As opposed to previous state-of-the-art methods based on holistic 3D regression, our method works on dense pixel-wise estimation. This is achieved by careful design choices in pose parameterization, which leverages both 2D and 3D properties of depth map. Specifically, we decompose the pose parameters into a set of per-pixel estimations, i.e., 2D heat maps, 3D heat maps and unit 3D directional vector fields. The 2D/3D joint heat maps and 3D joint offsets are estimated via multitask network cascades, which is trained end-to-end. The pixel-wise estimations can be directly translated into a vote casting scheme. A variant of mean shift is then used to aggregate local votes while enforcing consensus between the the estimated 3D pose and the pixel-wise 2D and 3D estimations by design. Our method is efficient and highly accurate. On MSRA and NYU hand dataset, our method outperforms all previous state-of-the-art approaches by a large margin. On the ICVL hand dataset, our method achieves similar accuracy compared to the nearly saturated result obtained by [5] and outperforms various other proposed methods. Code is available online1.

159 citations

Posted Content
TL;DR: In this paper, the authors propose an end-to-end tracking architecture, which is derived from a discriminative learning loss by designing a dedicated optimization process that is capable of predicting a powerful model in only a few iterations.
Abstract: The current strive towards end-to-end trainable computer vision systems imposes major challenges for the task of visual tracking. In contrast to most other vision problems, tracking requires the learning of a robust target-specific appearance model online, during the inference stage. To be end-to-end trainable, the online learning of the target model thus needs to be embedded in the tracking architecture itself. Due to the imposed challenges, the popular Siamese paradigm simply predicts a target feature template, while ignoring the background appearance information during inference. Consequently, the predicted model possesses limited target-background discriminability. We develop an end-to-end tracking architecture, capable of fully exploiting both target and background appearance information for target model prediction. Our architecture is derived from a discriminative learning loss by designing a dedicated optimization process that is capable of predicting a powerful model in only a few iterations. Furthermore, our approach is able to learn key aspects of the discriminative loss itself. The proposed tracker sets a new state-of-the-art on 6 tracking benchmarks, achieving an EAO score of 0.440 on VOT2018, while running at over 40 FPS. The code and models are available at this https URL.

159 citations

Book ChapterDOI
Matej Kristan1, Ales Leonardis2, Jiří Matas3, Michael Felsberg4, Roman Pflugfelder5, Roman Pflugfelder6, Joni-Kristian Kamarainen, Martin Danelljan7, Luka Čehovin Zajc1, Alan Lukežič1, Ondrej Drbohlav3, Linbo He4, Yushan Zhang4, Yushan Zhang8, Song Yan, Jinyu Yang2, Gustavo Fernandez6, Alexander G. Hauptmann9, Alireza Memarmoghadam10, Alvaro Garcia-Martin11, Andreas Robinson4, Anton Varfolomieiev12, Awet Haileslassie Gebrehiwot11, Bedirhan Uzun13, Bin Yan14, Bing Li15, Chen Qian, Chi-Yi Tsai16, Christian Micheloni17, Dong Wang14, Fei Wang, Fei Xie18, Felix Järemo Lawin4, Fredrik K. Gustafsson19, Gian Luca Foresti17, Goutam Bhat7, Guangqi Chen, Haibin Ling20, Haitao Zhang, Hakan Cevikalp13, Haojie Zhao14, Haoran Bai21, Hari Chandana Kuchibhotla22, Hasan Saribas, Heng Fan20, Hossein Ghanei-Yakhdan23, Houqiang Li24, Houwen Peng25, Huchuan Lu14, Hui Li26, Javad Khaghani27, Jesús Bescós11, Jianhua Li14, Jianlong Fu25, Jiaqian Yu28, Jingtao Xu28, Josef Kittler29, Jun Yin, Junhyun Lee30, Kaicheng Yu31, Kaiwen Liu15, Kang Yang32, Kenan Dai14, Li Cheng27, Li Zhang33, Lijun Wang14, Linyuan Wang, Luc Van Gool7, Luca Bertinetto, Matteo Dunnhofer17, Miao Cheng, Mohana Murali Dasari22, Ning Wang32, Pengyu Zhang14, Philip H. S. Torr33, Qiang Wang, Radu Timofte7, Rama Krishna Sai Subrahmanyam Gorthi22, Seokeon Choi34, Seyed Mojtaba Marvasti-Zadeh27, Shaochuan Zhao26, Shohreh Kasaei35, Shoumeng Qiu15, Shuhao Chen14, Thomas B. Schön19, Tianyang Xu29, Wei Lu, Weiming Hu15, Wengang Zhou24, Xi Qiu, Xiao Ke36, Xiaojun Wu26, Xiaolin Zhang15, Xiaoyun Yang, Xue-Feng Zhu26, Yingjie Jiang26, Yingming Wang14, Yiwei Chen28, Yu Ye36, Yuezhou Li36, Yuncon Yao18, Yunsung Lee30, Yuzhang Gu15, Zezhou Wang14, Zhangyong Tang26, Zhen-Hua Feng29, Zhijun Mai37, Zhipeng Zhang15, Zhirong Wu25, Ziang Ma 
23 Aug 2020
TL;DR: A significant novelty is introduction of a new VOT short-term tracking evaluation methodology, and introduction of segmentation ground truth in the VOT-ST2020 challenge – bounding boxes will no longer be used in theVDT challenges.
Abstract: The Visual Object Tracking challenge VOT2020 is the eighth annual tracker benchmarking activity organized by the VOT initiative. Results of 58 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The VOT2020 challenge was composed of five sub-challenges focusing on different tracking domains: (i) VOT-ST2020 challenge focused on short-term tracking in RGB, (ii) VOT-RT2020 challenge focused on “real-time” short-term tracking in RGB, (iii) VOT-LT2020 focused on long-term tracking namely coping with target disappearance and reappearance, (iv) VOT-RGBT2020 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2020 challenge focused on long-term tracking in RGB and depth imagery. Only the VOT-ST2020 datasets were refreshed. A significant novelty is introduction of a new VOT short-term tracking evaluation methodology, and introduction of segmentation ground truth in the VOT-ST2020 challenge – bounding boxes will no longer be used in the VOT-ST challenges. A new VOT Python toolkit that implements all these novelites was introduced. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).

158 citations

Posted Content
Dengxin Dai1, Luc Van Gool1
TL;DR: A novel method to progressive adapt the semantic models trained on daytime scenes, along with large-scale annotations therein, to nighttime scenes via the bridge of twilight time, to alleviate the cost of human annotation for nighttime images by transferring knowledge from standard daytime conditions.
Abstract: This work addresses the problem of semantic image segmentation of nighttime scenes. Although considerable progress has been made in semantic image segmentation, it is mainly related to daytime scenarios. This paper proposes a novel method to progressive adapt the semantic models trained on daytime scenes, along with large-scale annotations therein, to nighttime scenes via the bridge of twilight time -- the time between dawn and sunrise, or between sunset and dusk. The goal of the method is to alleviate the cost of human annotation for nighttime images by transferring knowledge from standard daytime conditions. In addition to the method, a new dataset of road scenes is compiled; it consists of 35,000 images ranging from daytime to twilight time and to nighttime. Also, a subset of the nighttime images are densely annotated for method evaluation. Our experiments show that our method is effective for model adaptation from daytime scenes to nighttime scenes, without using extra human annotation.

158 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations