scispace - formally typeset
Search or ask a question
Author

Luc Van Gool

Other affiliations: Microsoft, ETH Zurich, Politehnica University of Timișoara  ...read more
Bio: Luc Van Gool is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 133, co-authored 1307 publications receiving 107743 citations. Previous affiliations of Luc Van Gool include Microsoft & ETH Zurich.


Papers
More filters
Posted Content
TL;DR: This work presents a new approach to learn compressible representations in deep architectures with an end-to-end training strategy based on a soft (continuous) relaxation of quantization and entropy, which is anneal to their discrete counterparts throughout training.
Abstract: We present a new approach to learn compressible representations in deep architectures with an end-to-end training strategy. Our method is based on a soft (continuous) relaxation of quantization and entropy, which we anneal to their discrete counterparts throughout training. We showcase this method for two challenging applications: Image compression and neural network compression. While these tasks have typically been approached with different methods, our soft-to-hard quantization approach gives results competitive with the state-of-the-art for both.

155 citations

Journal ArticleDOI
TL;DR: It is shown that RFs initially trained with just 10 classes can be extended to 1,000 classes with an acceptable loss of accuracy compared to training from the full data and with great computational savings compared to retraining for each new batch of classes.
Abstract: Large image datasets such as ImageNet or open-ended photo websites like Flickr are revealing new challenges to image classification that were not apparent in smaller, fixed sets. In particular, the efficient handling of dynamically growing datasets, where not only the amount of training data but also the number of classes increases over time, is a relatively unexplored problem. In this challenging setting, we study how two variants of Random Forests (RF) perform under four strategies to incorporate new classes while avoiding to retrain the RFs from scratch. The various strategies account for different trade-offs between classification accuracy and computational efficiency. In our extensive experiments, we show that both RF variants, one based on Nearest Class Mean classifiers and the other on SVMs, outperform conventional RFs and are well suited for incrementally learning new classes. In particular, we show that RFs initially trained with just 10 classes can be extended to 1,000 classes with an acceptable loss of accuracy compared to training from the full data and with great computational savings compared to retraining for each new batch of classes.

151 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: It is shown that a properly trained pure-3D approach produces high quality labelings, with significant speed benefits allowing us to analyze entire streets in a matter of minutes, and a novel facade separation based on semantic nuances between facades is proposed.
Abstract: We propose a new approach for semantic segmentation of 3D city models. Starting from an SfM reconstruction of a street-side scene, we perform classification and facade splitting purely in 3D, obviating the need for slow image-based semantic segmentation methods. We show that a properly trained pure-3D approach produces high quality labelings, with significant speed benefits (20x faster) allowing us to analyze entire streets in a matter of minutes. Additionally, if speed is not of the essence, the 3D labeling can be combined with the results of a state-of-the-art 2D classifier, further boosting the performance. Further, we propose a novel facade separation based on semantic nuances between facades. Finally, inspired by the use of architectural principles for 2D facade labeling, we propose new 3D-specific principles and an efficient optimization scheme based on an integer quadratic programming formulation.

148 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: This work addresses the problem of semantic segmentation of nighttime images and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations, and designs a new evaluation framework to address the substantial uncertainty of semantics in nighttime images.
Abstract: Most progress in semantic segmentation reports on daytime images taken under favorable illumination conditions. We instead address the problem of semantic segmentation of nighttime images and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night via labeled synthetic images and unlabeled real images, both for progressively darker times of day, which exploits cross-time-of-day correspondences for the real images to guide the inference of their labels; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, designed for adverse conditions and including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, which comprises 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 151 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark to perform our novel evaluation. Experiments show that our guided curriculum adaptation significantly outperforms state-of-the-art methods on real nighttime sets both for standard metrics and our uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals that selective invalidation of predictions can lead to better results on data with ambiguous content such as our nighttime benchmark and profit safety-oriented applications which involve invalid inputs.

147 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new deep network for audio event recognition, called AENet, which uses a convolutional neural network (CNN) operating on a large temporal input.
Abstract: We propose a new deep network for audio event recognition, called AENet. In contrast to speech, sounds coming from audio events may be produced by a wide variety of sources. Furthermore, distinguishing them often requires analyzing an extended time period due to the lack of clear subword units that are present in speech. In order to incorporate this long-time frequency structure of audio events, we introduce a convolutional neural network (CNN) operating on a large temporal input. In contrast to previous works, this allows us to train an audio event detection system end to end. The combination of our network architecture and a novel data augmentation outperforms previous methods for audio event detection by 16%. Furthermore, we perform transfer learning and show that our model learned generic audio features, similar to the way CNNs learn generic features on vision tasks. In video analysis, combining visual features and traditional audio features, such as mel frequency cepstral coefficients, typically only leads to marginal improvements. Instead, combining visual features with our AENet features, which can be computed efficiently on a GPU, leads to significant performance improvements on action recognition and video highlight detection. In video highlight detection, our audio features improve the performance by more than 8% over visual features alone.

147 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations