scispace - formally typeset
Search or ask a question
Author

Luc Van Gool

Other affiliations: Microsoft, ETH Zurich, Politehnica University of Timișoara  ...read more
Bio: Luc Van Gool is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 133, co-authored 1307 publications receiving 107743 citations. Previous affiliations of Luc Van Gool include Microsoft & ETH Zurich.


Papers
More filters
Proceedings ArticleDOI
Dengxin Dai1, Luc Van Gool1
01 Dec 2013
TL;DR: This method consistently outperforms previous methods for semi-supervised image classification, and lets itself combine well with these methods, and works well for self-taught image classification where unlabeled data are not coming from the same distribution as labeled ones, but rather from a random collection of images.
Abstract: This paper investigates the problem of semi-supervised classification. Unlike previous methods to regularize classifying boundaries with unlabeled data, our method learns a new image representation from all available data (labeled and unlabeled) and performs plain supervised learning with the new feature. In particular, an ensemble of image prototype sets are sampled automatically from the available data, to represent a rich set of visual categories/attributes. Discriminative functions are then learned on these prototype sets, and image are represented by the concatenation of their projected values onto the prototypes (similarities to them) for further classification. Experiments on four standard datasets show three interesting phenomena: (1) our method consistently outperforms previous methods for semi-supervised image classification, (2) our method lets itself combine well with these methods, and (3) our method works well for self-taught image classification where unlabeled data are not coming from the same distribution as labeled ones, but rather from a random collection of images.

99 citations

Proceedings ArticleDOI
19 Oct 2017
TL;DR: This work poses query-relevant summarization as a video frame subset selection problem, which lets it optimise for summaries which are simultaneously diverse, representative of the entire video, and relevant to a text query.
Abstract: Although the problem of automatic video summarization has recently received a lot of attention, the problem of creating a video summary that also highlights elements relevant to a search query has been less studied. We address this problem by posing query-relevant summarization as a video frame subset selection problem, which lets us optimise for summaries which are simultaneously diverse, representative of the entire video, and relevant to a text query. We quantify relevance by measuring the distance between frames and queries in a common textual-visual semantic embedding space induced by a neural network. In addition, we extend the model to capture query-independent properties, such as frame quality. We compare our method against previous state of the art on textual-visual embeddings for thumbnail selection and show that our model outperforms them on relevance prediction. Furthermore, we introduce a new dataset, annotated with diversity and query-specific relevance labels. On this dataset, we train and test our complete model for video summarization and show that it outperforms standard baselines such as Maximal Marginal Relevance.

99 citations

Proceedings ArticleDOI
26 Nov 2007
TL;DR: This paper details the process, based on archaeological data, to simulate ancient Pompeii life in real time, and describes the system pipeline, which allows for the simulation of thousands of Virtual Romans inreal time.
Abstract: Pompeii was a Roman city, destroyed and completely buried during an eruption of the volcano Mount Vesuvius. We have revived its past by creating a 3D model of its previous appearance and populated it with crowds of Virtual Romans. In this paper, we detail the process, based on archaeological data, to simulate ancient Pompeii life in real time. In a first step, an annotated city model is generated using procedural modelling. These annotations contain semantic data, such as land usage, building age, and window/door labels. In a second phase, the semantics are automatically interpreted to populate the scene and trigger special behaviors in the crowd, depending on the location of the characters. Finally, we describe the system pipeline, which allows for the simulation of thousands of Virtual Romans in real time.

99 citations

Posted Content
TL;DR: This work proposes a novel tracking architecture which can utilize scene information as dense localized state vectors, which can encode, for example, if the local region is target, background, or distractor and combined with the appearance model output to localize the target.
Abstract: Current state-of-the-art trackers only rely on a target appearance model in order to localize the object in each frame. Such approaches are however prone to fail in case of e.g. fast appearance changes or presence of distractor objects, where a target appearance model alone is insufficient for robust tracking. Having the knowledge about the presence and locations of other objects in the surrounding scene can be highly beneficial in such cases. This scene information can be propagated through the sequence and used to, for instance, explicitly avoid distractor objects and eliminate target candidate regions. In this work, we propose a novel tracking architecture which can utilize scene information for tracking. Our tracker represents such information as dense localized state vectors, which can encode, for example, if the local region is target, background, or distractor. These state vectors are propagated through the sequence and combined with the appearance model output to localize the target. Our network is learned to effectively utilize the scene information by directly maximizing tracking performance on video segments. The proposed approach sets a new state-of-the-art on 3 tracking benchmarks, achieving an AO score of 63.6% on the recent GOT-10k dataset.

98 citations

Book ChapterDOI
01 Jan 2014
TL;DR: A comparison between two techniques for one-shot person re-identification from soft biometric cues based upon a descriptor composed of features provided by a skeleton estimation algorithm and a novel technique to warp the subject’s point cloud to a standard pose.
Abstract: In this chapter, we propose a comparison between two techniques for one-shot person re-identification from soft biometric cues. One is based upon a descriptor composed of features provided by a skeleton estimation algorithm; the other compares body shapes in terms of whole point clouds. This second approach relies on a novel technique we propose to warp the subject’s point cloud to a standard pose, which allows to disregard the problem of the different poses a person can assume. This technique is also used for composing 3D models which are then used at testing time for matching unseen point clouds. We test the proposed approaches on an existing RGB-D re-identification dataset and on the newly built BIWI RGBD-ID dataset. This dataset provides sequences of RGB, depth, and skeleton data for 50 people in two different scenarios and it has been made publicly available to foster advancement in this new research branch.

98 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations